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7.1 Tactoids form from GB rods in molecular dynamics simulations with T = 0.55,
N = 2000, L = 75σ0, and can interact favorably with colloids. (a) Schematic
for the Gay-Berne model potential for our choices of parameters when rods are
parallel. Rods interact based on their distance and orientation, and depend on
two aspherical parameters: κ, the aspect ratio, here set to κ = 3, and κ′, the ratio
of aspherical well depths (see Appendix 7.5.1 for more details). The attractive
part of the potentials for two rods with the same orientation and κ′ = 1 and
κ′ = 0.5 are plotted in the second and third portion of this subfigure. The end-
end well depth is deeper by a factor of two for κ′ = 0.5. Tactoids formed from
rods with κ′ = 1 are the subject of Section 7.2.1, while Section 7.2.2 studies
κ′ = 0.5. (b) A snapshot from a molecular dynamics trajectory of a tactoid
with κ′ = 1 from a simulation without a colloid. (c) The director field of the
cross-section at the midplane of a tactoid extracted from a molecular dynamics
trajectory of a tactoid with κ′ = 1 from a simulation without a colloid. (d) A
snapshot of the homeotropic colloid used in molecular dynamics simulation. This
colloid is composed of 421 fixed rods with their centers placed on the surface of
a sphere with radius 3.5σ0 and is the colloid we will use in the MD portion of
this work. (e) A snapshot from molecular dynamics simulation of a Gay-Berne
tactoid with κ′ = 1 associated with a homeotropic colloid. In this snapshot, the
immobilized colloid is colored yellow, the molecularly-thin splayed nematic layer
adsorbed to the colloid is colored blue, and all other rods are colored red. (f)
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ABSTRACT

One characterization of human scientific and industrial development is in terms of the in-

creasing ability to control the physical world at smaller and smaller length scales. As control

has increased, we have advanced from chemistry, to nuclear physics, to particle accelerators.

But control over individual particles is different from control over many [6]. In this work,

we study how particles of size between nanometers and micrometers, called colloids or so-

lutes, interact within complicated solvent systems (or “soft matter” fluids). Our goal is to

learn how to design colloids and fluids such that we can control their properties, such as the

solubility of colloids within the fluid, or the shapes of fluid droplets that associate with the

colloid. In particular, for a large part of this work, we are motivated by recent studies of

colloids and surfaces within molten salts and ionic liquids that defy theoretical explanation

to this day. To work towards an explanation, we search for the key elements that are re-

quired to reproduce the observed phenomena: the minimal model to describe experiment.

In addition to simple theoretical models, we extend the applicability of our work through

molecular and coarse-grained computer simulation.

In this work, we first introduce some foundational theories of fluids and ionic solutions

that we will return to throughout this work. Motivated by recent unexplained experimental

results on high ionic strength solutions, we apply some of these theoretical tools to a lattice

model, the charge-frustrated Ising model, which we use to generalize past models of dilute

ionic solutions to solvents with high ionic strength. This model helps us to frame the next

two studies that we detail, which examine the unexpected experimental observation that

nanocrystal colloids do not precipitate out of solution in molten salts and ionic liquids, ie. are

“colloidally stable”. Though our mean field model and molecular dynamics simulations, are

able to explain the majority of the experimental observations in these works, some questions

still remain. Next, changing focus, we examine another colloid-soft matter system, in which

a colloid is able to affect shape changes upon nematic liquid crystal droplets. We provide a

xix



set of predictions about the requirements for a colloid and fluid to have such dramatic shape

changes as the stable division of fluid droplets. The connecting thread between these works

is our attention to the minimal features necessary to describe these complex fluids with long-

range interactions. We are continually surprised at the effectiveness of these simple models

at capturing complex physical phenomenology.
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CHAPTER 1

INTRODUCTION

The work in this document is addressed to the question: how can we gain control over the

physical world on nano- to micro-scopic length scales? Precise control and fundamental un-

derstanding allow for rational design, and design allows for the development of industries

and the engineering of the fantastic devices we take for granted every day. Even before the

methods of science, control on microscopic scales existed, having been discovered through

trial and error. As one example, in metal smithing, the defects within the metal fundamen-

tally determine the physical properties of that metal [7]. Much of a smith’s job was to use

macroscopic procedures (such as hitting a piece of hot steel repeatedly with a hammer) in

order to affect microscopic changes (properly arranging the defects within the steel). This

microscopic control over defects was incidental and “evolved” rather than “understood”, the

result of specific formulas and rituals that were discovered through tinkering and passed

down from master to apprentice. In contrast, the coupling of a microscopic theory with

rational design allows for access to possibilities far beyond those discovered purely through

serendipity, for example, the transistor or superconductors. The power of rational design

can be seen in the development of nanoscience, which has its origin centuries ago when metal

nanocrystals were used to color stained glass windows. It was not until the development of

quantum mechanics that science could explain that the bright and durable colors in these

materials were due to the nanoscale sizes of the metal nanoparticles, which affected how the

particles interacted with light, here through “plasmon resonance” [8]. And even then, it took

another few decades before the promise of further exploring such small length scales would

be fully articulated [9]. More recently, nanoscience has truly begun to flourish, but none of

this was possible until understanding of physical and chemical phenomenon was unlocked.

Here, we focus on the “mesoscopic” world – between molecular length scales and a few

orders of magnitude larger – because these are the length scales over which nanocrystals
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and slightly larger objects interact with each other. The systems under study are frequently

categorized as “soft condensed matter”, or “soft matter” [10], and consist of many particles

that interact strongly, yet in which thermal energy plays a large role, relegating quantum

mechanics to the background. At these length scales, the number of component pieces to

build any reasonably-sized structure is too large to control piece-by-piece. Rather than

try to manually place each building block ourselves, we look for a way to engineer the

building blocks so that they arrange themselves into the order we desire. We call this “self-

assembly” [11]. An overarching goal in the field of self-assembly at mesoscopic length scales

is to acquire such a detailed ability to control matter that we can engineer structures with

a similar size and fidelity as cells do in nature.

Broadly, there are two main approaches to accomplish self-assembly at mesoscopic length

scales. One is to engineer particle interactions so that they assemble into desired structures

without any outside forces [12, 13, 14]. Another is concerned with how matter or energy

input into a self-assembling system affects the structures that result [15, 16, 17]. In this

work, we focus on the first approach, and specifically, how the interactions of particles of

size between nanometers and micrometers – referred to as “solutes” or “colloids” – and

the fluid they are immersed in lead to self-assembly of those colloids. A consistent theme

throughout this work is the search for the minimal model that captures a set of phenomena.

This work will focus on two areas of interest in soft matter. The first is the study of

self-assembly of solutes within fluids with high ionic strength, such as molten salts and ionic

liquids. In addition to numerous industrial applications, these “ionic fluids” support a range

of rich phenomena that can serve to increase scientific understanding of self-assembly on

a general level. For example, the formalism introduced in Chapter 2 and used throughout

later chapters also applies in a broad range of other soft matter systems, including block

copolymers [18, 19] and lipid membranes [20]. Thus, a study of self-assembly in ionic fluids

will enrich our understanding of self-assembly in soft matter in general. Further, the long-
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range correlations that characterize ionic fluids with high ionic strength are challenging to

treat, and indeed, are an area of open interest, as recent experimental reports of long-ranged

correlations have defied theoretical explanation [21, 22, 23]. The second area is concerned

with how nematic liquid crystal droplets interact with, and are shaped by, colloids. The ability

of colloids to influence the shapes of fluid droplets is reminiscent of cellular processes that

occur with incredible consistency and precision, such as cell division [5].

To be specific, we first provide an introduction, in Chapter 2, of some key concepts about

ionic fluids to establish some of the background of the field. In this chapter we also introduce

some of the formalism that we will use through much of this work. And to motivate the

need for new physical models, we discuss a recent set of experiments by the Israelachvili,

Perkin, and Ducker labs [21, 22, 23] which demonstrate unexplained physical phenomenon in

high ionic strength solutions. Next, we detail a study of a lattice model, the frustrated Ising

model, that we extended to study high ionic strength fluids in a coarse-grained manner [24]

in Chapter 3. The frustrated Ising model is a minimal model that nonetheless captures key

elements required for a framework to describe both low and high ionic strength fluids, and by

virtue of its simplicity, the corresponding mean field theory serves as a useful framework that

we return to throughout the rest of our work on ionic fluids. Our simulations of the lattice

model, using a custom code which I have written in its entirety and which is available online,

allow us to extend our results beyond mean field theory, and show under what conditions the

mean field theory breaks down. In Chapter 4, we discuss a work examining the unexpected

observation that nanocrystal colloids within molten inorganic salts do not precipitate out

of solution [25]. We provide evidence that the stability of the colloids is a result of their

strong interactions with the ionic fluids, and that linear response and a mean field theory

can explain a surprising amount of the physics that leads to colloidal stability. A follow-up

to that study is reported in Chapter 5, and includes an additional set of measurements by

my experimentalist collaborators of the structuring of ionic liquids and molten salts due to
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nanocrystal colloids [26], providing more evidence for the hypothesis we advance in Chapter 4.

An important feature of this study is the clear demonstration of physics beyond the linear

response regime that is still open to explanation. A currently unpublished continuation of

the frustrated Ising work is the subject of Chapter 6, in which we generalize the frustrated

Ising model and add solute- or colloid-like objects to bring the model more directly in line

with the questions studied in the previous two works on colloids in ionic fluids. At this

point, we change the focus from ionic fluids to another soft matter system in Chapter 7 and

lay out a study of the interactions between elongated nematic liquid crystal droplets (called

“tactoids”) and colloids. Finally, we sum up the themes of this work and discuss intriguing

future directions in Chapter 8.
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CHAPTER 2

IONIC FLUIDS: A BRIEF INTRODUCTION

One of the chief questions we will be addressing in the next few chapters is whether nanocrys-

tal colloids will remain in solution or precipitate out of a molten salt or ionic liquid solvent.

Setting aside numerous practical applications [27, 28], there are two main reasons this is

an interesting question. First, because these colloids prove to remain in solution [25], de-

spite the contrary predictions of traditional frameworks. Thus, there is some underexplored

physics and chemistry to attend to. Second, because the measured decay length of forces

between plate-like solutes within high ionic strength solutions was recently reported and

has not yet been explained with theory or simulation [21, 22, 1, 23]. As we will see, these

two aspects are related because the way that a surface of a colloid or plate interacts with a

fluid is integrally tied to how multiple colloids or plates interact. To address the question

of nanocrystal colloid solubility, we need to introduce a number of theoretical tools, some of

which are surprisingly effective despite their simplicity.

Fundamentally, the question of whether colloids remain within solution is a matter of

whether there is an interaction between colloids that is repulsive enough to resist the attrac-

tive van der Waals interactions between them – which leads to colloids remaining in solution

– or not – which leads to aggregation and precipitation from solution [29]. A repulsive force

can result from how a fluid responds to a colloid [30], and we will be detailing ways in which

this can occur throughout the present chapter (in particular, see Section 2.3). Thus, in

order to derive colloid-colloid interactions, we need to understand how the fluid will respond

to a single colloid. Through linear response and the fluctuation-dissipation relation, which

we introduce in Section 2.2, we can relate the fluid response to a colloid with the correla-

tions within an unperturbed fluid. Then our method of study is to begin by examining the

correlations within a fluid, next turn our attention to colloid-fluid correlations, and then

finally, to our goal of fluid-mediated colloid-colloid interactions. In the studies that follow in
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Chapters 3–6, we pair these simple tools with both molecular and coarse-grained simulation

techniques in order to help bridge the gap between these minimal theoretical models and the

real world to some extent.

The chapter is laid out as follows. In Section 2.1, we introduce the foundational work

describing the correlations within ionic fluids, the Debye-Hückel (or DH) theory. The DH

theory, though effective, is limited in its range of application to dilute ionic fluids, and much

of this document is dedicated to pushing beyond this dilute regime. Next, we describe the

linear response and fluctuation-dissipation relations in Section 2.2, which we will return

to throughout this text. The linear response relation describes a first approximation of

the response of a fluid to a perturbing potential, and as such, is strictly limited to weak

perturbations. It is surprising how effective this approximation is in the context of strongly-

interacting fluids, as we will see in Chapters 4 and 5. We detail the concept of colloidal

stability in Section 2.3, before applying linear response concepts to find the correlations

induced by colloids within a DH fluid. From these correlations, we can achieve our goal of

computing the free energy of interaction between colloids. However, this result is limited

to the dilute ion regime, and we are interested in pushing to higher ionic strengths; we

will return to tools developed in this section once we have developed a theory of high ionic

strength fluids in Chapters 3 and 4. In Section 2.4, we summarize some recent experimental

results which provide a clear demonstration of the need to go beyond DH and DLVO to

understand these high ionic strength fluids. An important feature missing from the DH

framework is an accounting for the correlations between ions. To address this, we make

a brief digression in Section 2.5 to outline some basic concepts about spatial correlations

from the theory of liquids. Finally, in Section 2.6, we discuss some of the attempts to

incorporate ion-ion correlations into theories of ionic fluids, which will serve as a basis for

our understanding moving forward into the next chapter.
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2.1 The theory of Debye and Hückel

The Debye-Hückel theory is derived using a number of assumptions and a key electrostatics

equation: the Poisson equation, which describes the electrostatic potential due to a distri-

bution of charge. Here, we are chiefly interested in the correlations between ions in a fluid,

and the correlations induced by a solute within a solution of ions; hence we will be focusing

exclusively on these aspects of the theory. The interested reader is referred to the literature

for a more expansive review of the DH theory [31, 32, 33]. Proceeding, the Poisson equation

is written

∇2V (r) = −4πφ(r), (2.1)

where the 4π factor occurs due to our choice to use Gaussian, rather than SI, units.1 Here,

V (r) is the electrostatic potential and φ(r) is the charge density.2 Importantly, we will

consider the average configuration induced by a set of boundary conditions – which might

represent a charged particle fixed at the origin, a charged plate, or some other simple ge-

ometry – within a fluid of charges which are dilute and modeled as a continuous field – in

other words, the response due to a perturbation. There may be other, uncharged particles

in the fluid (such as water molecules in an aqueous solution of ions), but their only effect

is to add a uniform background contribution, which is accounted for by the dimensionless

relative permittivity. For notational convenience, we incorporate the relative permittivity

into the parameter Q, which describes the strength of the electrostatic interaction and has

units of charge2. Because of our simplistic treatment of any possible background uncharged

molecules, the equations we derive will apply equally well to a dilute solution of ions in water

1. In Gaussian units the Coulomb interaction is ∼ 1/r in real space or ∼ 4π/k2 in Fourier space; further,
there is no permittivity of free space, though the dimensionless relative permittivity may appear. Here, the
relative permittivity is incorporated into a constant, Q, which describes the strength of the electrostatic
interaction.

2. Throughout this work, the choice of units is as follows. The charge density φ(r) has units 1/lengthd,
for d the dimension, and the electrostatic potential V (r) has units of energy/charge2 (which is equivalent to
1/length in Gaussian units). Further, charge valences qj will be unitless, and frequently ±1, and a parameter
Q with units charge2 will be used.
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as to a high temperature gas of ions, provided the assumptions we discuss below hold. For

our purposes, we consider two different cases: the potential and charge distribution with

respect to a point charge q fixed at the origin in a dilute fluid of point charges, and that of a

charge, q, fixed at the origin with hard sphere radius σ in a dilute fluid of charges with hard

sphere radius σ (in the limit that σ → 0, these cases become identical).

Since the system of charges is at equilibrium, we use the Boltzmann distribution to write

down the distribution of charges, φ(r), in the fluid due to the charge fixed at the origin, not

yet specializing to a point charge or a charged hard sphere:

φ(r) =
∑
j

qjρj exp
(
−βwj(r)

)
≈
∑
j

qjρj exp
(
−βQqjV (r)

)
,

(2.2)

where qj is the valence of charge j, ρj is the concentration of particles of the same type

as particle j, β = (kBT )−1 is the inverse thermal energy, kB is the Boltzmann constant,

and in the second line we approximate the potential of mean force wj(r) with QqjV (r), ie.

the pair interaction energy. Replacing the potential of mean force with a pair potential is

a first-order approximation for very dilute systems, ie. exp(−βw(r))
ρ→0−−−→ exp(−βv(r)) for

v(r) an arbitrary pair potential, see discussion in Hansen and McDonald, Chapter 2. [34].

Here, the approximation only holds when the electrostatic interaction overwhelms all other

interactions at all separations. This is equivalent to treating ions in the dilute limit, and

fails even for the simple case of a fluid of charged hard spheres (ie. hard spheres with point

charges at their centers) at moderate concentration [35]. Note that Eq. 2.2 applies for all

r when the origin charge is a point charge, but only for r > σ when the particles have an

excluding volume.

We can combine the Poisson and Boltzmann equations, 2.1 and 2.2, to make the aptly
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named Poisson-Boltzmann equation, and then linearize:

∇2V (r) = −4π
∑
j

qjρj exp
(
−βQqjV (r)

)
βQqjV (r)→0
−−−−−−−−−→ −4π

∑
j

qjρj
(
1− βQqjV (r)

) (2.3)

Having linearized, we have made a second assumption. Just as the electrostatic interaction

outweighed all other interactions, so too the thermal energy outweighs the electrostatic

interaction (ie. βQqjV (r) � 1). Now we have a second order, inhomogeneous differential

equation in the potential. The homogeneous solution is

Vh(r) =
A

r
exp(−κDr), (2.4)

with

κD =

√
4πQ

∑
j q

2
jρj

kBT
, (2.5)

which is an inverse length scale that is variously referred to as the inverse Debye screening

length and the Debye constant. The Debye screening length is a fundamental parameter

which measures the strength of electrostatic interactions relative to the thermal energy and

will be used throughout this work, see further discussion in Section 2.1.1. The particular

solution is Vp(r) = 1/(βQqj) and is unimportant for our purposes since we are interested in

the charge density.

The electroneutrality condition, which requires that the ion cloud cancel out the charge

at the origin, can be used to fix the constant A. From the Poisson equation, Eq. 2.1 and the

DH potential Eq. 2.4, the charge density due to an origin point charge is

φpc(r) = −
Apcκ

2
D

4πr
exp (−κDr) , (2.6)

9



and so the electroneutrality condition becomes

0 = q + 4π

∫ ∞
0

dr r2φp(r) (2.7)

from which Apc = q. The only difference when including the hard sphere is that the integral

in the electroneutrality constraint, Eq. 2.7, starts from σ rather than 0, as the fluid cannot

access the excluded volume. Then for the hard sphere case, the normalization constant is

found to be Ah = q
1+κDσ

exp (κDσ), leading to a charge distribution of

φhs(r) = −
qκ2
D

1 + κDσ

1

4πr
exp (−κD(r − σ)) . (2.8)

Thus, the DH theory predicts that an ion fixed at the origin within a continuum fluid

of dilute charge induces an exponentially decaying cloud of charge of the opposite valence.

It predicts that this cloud of charge has amplitude depending on the valence of the central

charge, the Debye constant, and, for a hard sphere origin charge, σ. And it predicts that

the cloud of charge decays over a length scale determined by the Debye constant.

2.1.1 The Debye constant, or inverse screening length, κD

Before moving on, it is worth spending some time to dwell on the Debye constant (or, equiv-

alently, the inverse Debye screening length), κD (defined in Eq. 2.5) as it will be mentioned

frequently through Chapters 3–6. The Debye constant defines the electrostatic length scale,

and can be read as a measure of the ratio of the electrostatic and thermal energies. It will

be seen that the Debye constant, in combination with another length scale such as the size

of charged particles, σ, will be an important determining factor for when the DH theory can

be applied with reasonable effectiveness. When κDσ is small, the electrostatic length scale is

much larger than the ion size, which validates the assumptions we made above in Section 2.1,

namely, (1) the neglect of all interactions between particles except for electrostatics, and,
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(2), that even electrostatics is overwhelmed by thermal energy. What happens when κDσ

approaches and eventually surpasses 1? Non-electrostatic interactions with length scale of

the same order as the ion size may begin to play a role. Even neglecting other interactions,

the inclusion of a hard sphere interaction will become increasingly important. The Debye-

Hückel theory will no longer serve us well, and we will need to appeal to approaches that

account for the other interactions, and hence correlations, between particles.

Throughout this work, we will be interested in the effects of varying the inverse Debye

screening length, κDσ, upon the measured inverse screening length, κsσ. When the DH

theory works well, ie. for κDσ � 1, this is a trivial question, as the measured screening

length and Debye screening length are equivalent, κs → κD. However, as the DH theory

begins to break down for larger values of κDσ, we will find that κsσ 6= κDσ. It will

turn out that the way in which we vary κDσ seems to have little effect on the resulting

measured screening length, κsσ. Thus, we can imagine a variety of different methods to

vary κDσ: changing the concentration of ions in solution, changing the solvent (and hence

the permittivity), changing the valence of ions, changing the size of ions, or varying the

temperature. We will alter whichever is most convenient: in experiments to date, it will

often be the case that changing the concentration is easiest, while in our simulation work,

we will mainly focus on varying the temperature. Ultimately, the important parameter seems

to be the Debye constant relative to the ion size, κDσ.

In the next section, we outline some of the tools that we use to relate the correlations

within an unperturbed fluid and the response of a fluid to the inclusion of a colloid, which

we will leverage later to compute the free energy of interaction between two colloids.
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2.2 Linear response: the connection between liquid-liquid

correlations and solute-liquid interactions

The response of a liquid to a small perturbation – ie. the linearized approximation to the

response or the “linear response” – is integrally tied to the fluctuations of the fluid when

unperturbed [34]. A small perturbation can be a liquid particle fixed at the origin, or a

solute plate, provided the interaction with the fluid is not too strong, and so linear response

gives us access to the correlations induced by a solute within a liquid.

Let’s examine a simple toy model to illustrate the procedure that we will use to extract

the structure of a fluid due to a perturbation. To extract the response function, which

characterizes the response of the fluid to perturbation, we will write down a simple model

of a dilute ionic fluid (which will turn out to equivalent to the DH theory!), starting with

the Hamiltonian. The partition function and free energy can be written down with the

Hamiltonian in hand, and we will extract the linear response relation and a form of the

fluctuation-dissipation relation from functional derivatives of the free energy. We will then

specialize to a mean field free energy using the saddle-point approximation to simplify the

formalism for future use in Chapters 3–6, because in our case, at temperatures far about

any phase transition, the mean field free energy has everything we need and the formalism

is simplified. An additional reason to make the saddle-point approximation is that it allows

connection with other mean field theories, such as the one developed starting from a lattice

in Section 3.6. Functional differentiation of the mean field free energy gives us a another

route to the linear response relation. Finally, we use the linear response relation to compute

the density profiles due to a point particle fixed at the origin and due to a plate-like solute.

We discuss some of the consequences of the linear response relation for these density profiles.

We start with a model fluid with a coarse-grained, continuum order parameter field,

φ(r), that describes the local deviation from uniform charge density at each point, ie.

φ(r) = ρ+(r) − ρ−(r) with ρ±(r) the local density of + or − ions. We can write down
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a phenomenological, Landau-Ginzburg-style Hamiltonian [36, 37, 38, 39]:

H[φ] =
σ3

2

∫
d3r a [φ(r)]2 +

σ3

2

∫
d3rd3r′ρQφ(r)V (|r− r′|)φ(r′), (2.9)

with σ a coarse-graining parameter with units of length,3 a a parameter dependent on

temperature (here, a ∼ kBT with kB the Boltzmann constant), ρ the uniform density of ions,

V (r) the electrostatic potential derived from the Poisson equation, here for point charges,

V (r) ∼ 1/r, and Q a parameter controlling the strength of the electrostatic interaction (as

introduced in the last section). In Fourier space4 it can be written

H =
σ3

2

∫
d3k

(2π)3

∣∣∣φ̃(k)
∣∣∣2 [a+

4πρQ

k2

]
=

1

2

∫
d3k

(2π)3

∣∣∣φ̃(k)
∣∣∣2 χ̃−1(k),

(2.10)

where in the second line, we define the function

χ̃(k) =
1

aσ3

1

k2 + κ2
D

, (2.11)

known as the response function, which will play an important role as we soon discuss. Here,

κ2
D ≡ 4πρQ/a is the Debye constant, compare with Eq. 2.5. The Hamiltonian defined above

describes the energy of an unperturbed dilute fluid of ions. We are also interested in the

3. In the derivation of a Landau-Ginzburg theory from a lattice model in Section 3.6, σ is the lattice
length. In a system not constrained to the lattice, it might instead be the relevant correlation length,
particle size, or mean spacing between particles. That derivation also shows that the “square gradient” term
which commonly appears in Landau-Ginzburg field theories is due to nearest neighbor interactions, and so
neglecting it as we do here is analogous to the “dilute ions” approximation made in the DH theory.

4. Fourier conventions are described in Appendix Section 9.2.
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case where an external potential, h(r), perturbs the fluid, which can be written

Hext = −
∫

d3r h(r)φ(r)

= −
∫

d3k

(2π)3
h̃(k)φ̃(−k).

(2.12)

The partition function for our fluid, Z, is written

Z =

∫
Dφ exp

[
−β
(
H[φ]−

∫
d3r h(r)φ(r)

)]
=

∫
Dφ exp

[
−β/2

(∫
d3k

(2π)3
χ−1(k)

∣∣∣φ̃(k)
∣∣∣2 − 2h̃(k)φ̃(−k)

)]
,

(2.13)

where
∫
Dφ indicates a functional integral, ie. an integral which samples every possible

value of φ(r) at every point r, β = (kBT )−1 is the inverse thermal energy, and in the second

line we have written the argument of the exponential in Fourier form. Here, we will use

the external potential for two purposes. First, to perturb the fluid from its uniform ground

state. Second, to learn about the relation between fluctuations in the unperturbed fluid and

the response of the fluid to perturbations, which we do now.

Because the partition function functional integral in Eq. 2.13 is Gaussian in the charge

density φ̃, we can use a continuum limit extension of Gaussian integration to compute the

partition function, which has the form [37, 39]

Z ∼ exp

(
β/2

∫
d3k

(2π)3
χ(k)

∣∣∣h̃(k)
∣∣∣2) . (2.14)

Functional derivatives of the free energy, F = −kBT logZ, with respect to the external field,

h̃ then give the following results [37, 39]

δF

δh̃(−k)
=
〈
φ̃(k)

〉
= χ(k)

〈
h̃(k)

〉
, (2.15)
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where the middle expression is found by differentiation of Eq. 2.13 and the right expression

is found from differentiation of the result Eq. 2.14. Differentiating twice gives

δ2F

δh̃(−k)δh̃(k′)
=
〈
φ̃(k)φ̃(k′)

〉
= kBTχ(k)δ(k + k′). (2.16)

The first expression, Eq. 2.15, tells us that the the presence of an external field h̃, will lead

to an average density profile
〈
φ̃
〉

which is the product of the external field and the response

function, χ(k). We will use this linear response relation frequently in the rest of this work.

The second expression, Eq. 2.16, is a form of the fluctuation-dissipation relation that relates

the fluctuations of the unperturbed fluid, ie. the Fourier form of the charge-charge correlation

function
〈
φ̃(k)φ̃(k′)

〉
to the response function, ie. χ(k) which encodes information about

how the fluid relaxes in the presence of perturbations. This second result also allows us to

immediately find both the response function and the charge-charge correlation function upon

writing down a Hamiltonian that is quadratic in φ, which can be seen easily in Eq. 2.10.

Now, we simplify the free energy expression for future use. We do so because the mean

field expression is sufficient for our purposes going forward, and its simplicity allows for

clearer manipulation and connections to other mean field formalisms (compare, for example,

with the results of the derivation of a variational mean field theory of a lattice model in

Section 3.6). There exists some special charge density, φ∗(r), that minimizes the Hamiltonian

H subject to the external potential h(r). We will approximate the functional integral for

Z in Eq. 2.13 with the contribution from only this φ∗. This is known as the saddle-point

approximation, and the intuition driving it is that the exponential weighting in the partition

function will make other contributions negligible relative to the one from φ∗. In the saddle-
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point approximation, the mean field free energy can be written

Fmf [φ∗] = −kBT log

(
exp

[
−β
(
H [φ∗]−

∫
d3r h(r)φ∗(r)

)])
= H [φ∗]−

∫
d3r h(r)φ∗(r).

(2.17)

Small fluctuations about the mean field φ∗ can be accounted for using standard Gaussian

integration techniques [37, 39]. For the models that we study later in this text (eg. Section 2.6

and 3.6), the correction due to Gaussian fluctuations is only important near the critical point

(which for those models separates a “high temperature” phase in which charge correlations

decay exponentially with distance from a “low temperature” phase in which they persist

throughout the entire fluid) [40, 41, 19, 42]. Therefore, throughout this document, we start

from the mean field free energy in the saddle point approximation, unless otherwise noted

(such as in Section 3.6 where we derive a similar Landau-Ginzburg-style mean field free

energy starting from a lattice). We will use the notation F , rather than Fmf and φ rather

than φ∗ for simplicity, but it is understood that we are writing down the mean field versions

of these variables.

Proceeding, we write down the mean field free energy explicitly:5

F =
σ3

2

∫
d3r a [φ(r)]2 − h(r)φ(r) +

σ3

2

∫
d3rd3r′ρQφ(r)V (|r− r′|)φ(r′)

=
σ3

2

∫
d3k

(2π)3

∣∣∣φ̃(k)
∣∣∣2 [a+

4πρQ

k2

]
− h̃(k)φ̃(−k),

(2.18)

The perturbation of the fluid due to a potential can be derived in a different method

than in Eq. 2.15, namely by extremizing the free energy using the Euler-Lagrange equation,

discussed in Appendix Section 9.1.2. Application of the result of that analysis, Appendix

5. In the derivation of the mean field free energy of an ionic fluid starting from a lattice in Section 3.6,
the source of the first term with prefactor a is the lowest order part of an expansion of the entropy.
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Eq. 9.6, to the mean field free energy, Eq. 2.18, leads to

δF

δφ̃(−k)
= σ3

[
a+

4πρQ

k2

]
φ̃(k)− h̃(k)

= χ̃−1(k)φ̃− h̃(k),

(2.19)

where in the second line, the inverse response function χ̃−1(k), defined in Eq. 2.11 has been

substituted in. The free energy is extremized when the functional derivative is 0, and so

φ̃(k) = χ̃(k)h̃(k). (2.20)

Confirming our previous linear response result in Eq. 2.15, Eq. 2.20 should be read as saying

that, when perturbed, the order parameter field responds in a manner that is dictated by

the product of the response function with the external potential, to first order. In real space,

this equation would take the form of a convolution, but its content would remain unchanged.

This is a powerful result. The usefulness of this linear response relation, Eq. 2.20, can

be seen by considering the effect that placing an idealized particle into a fluid will have.

Placing a particle at the origin in a fluid can be recast as placing an external potential – the

potential due to a particle at the origin – upon the fluid. Then, the structuring of a fluid due

to a particle at the origin can be found using the linear response function and the pairwise

potential of particles in the fluid. Thus, the response function contains information that

describes the structuring of the fluid, a manifestation of the fluctuation-dissipation relation.

In a similar manner, the response function can be used to compute the correlations induced

by a solute within a fluid. Specifically, if the solute is considered to be an infinite plate with

normal in the positive-z direction, the order parameter field can be determined by computing

the product of the inverse response function and the potential of the infinite plate.

In the two cases just discussed, the simplest model of the perturbing potential is a delta

function at the origin. In the case of a particle fixed at the origin, a model potential can be
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written

h3(r) = ε3 σ
3 δ(r) = qε3 σ

3 δ(x)δ(y)δ(z), (2.21)

with ε3 a constant with units of energy that controls the strength of the local interactions

between the fixed particle and the fluid. Using this model potential and the linear response

relation Eq. 2.20 gives a charge density

φ̃(k) =
qε3
a

k2

k2 + κ2
D

, (2.22)

which leads, upon inverse Fourier transformation, to a perturbed solvent profile that goes as

φ(r) = −qε3
a

κ2
D

4πr
exp (−κDr) . (2.23)

Comparing to the result of the DH theory for a central point charge, Eq. 2.6, we have exactly

the same result within a prefactor that describes the temperature-scaled potential due to the

point charge. Thus, the Hamiltonian Eq. 2.9 and the corresponding saddle-point mean field

free energy Eq. 2.18 are shown to correspond to the DH dilute fluid of charges. However,

armed with the mean field free energy and linear response formalism, we can go beyond

our DH results and compute the charge density induced by the inclusion of solutes. For

an infinite plate with normal in the z-direction, a similar model potential to describe the

surface-fluid interaction is

h1(z) = qε1 σ
3 δ(z), (2.24)

leading to a solvent profile:

φ(z) = −1

2

qε1
a
κD exp (−κDz) . (2.25)

We emphasize again that the decay profile is dictated by the length scale 1/κD that depends
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exclusively on the properties of the fluid as encoded in the response function – the role of

the particle at the origin or the solute is only to perturb the fluid, influencing the prefactor.

Now with a formalism, admittedly approximate, for relating the correlations in an unper-

turbed bulk fluid to the response of a fluid due to a solute, we proceed to study the stability

of colloids within dilute ionic fluids. The DLVO model we develop in the next section is

limited in its range of application because we use the DH set of assumptions, but the tech-

niques we develop are surprisingly applicable to more complicated models, such as the one

developed in Chapter 3, which better account for high ionic strength fluids. We will discuss

this further in Chapter 4.

2.3 DLVO theory and Derjaguin approximation

Colloids are solute particles within a solvent. They encompass a broad ranges of both solutes

and solvents, and are important in a wide range of contexts. A few examples include milk,

where globules of fat and protein are dissolved within an aqueous solution; nanoparticles with

bulky ligands in organic solvents; proteins interacting within a lipid bilayer membrane [43];

charged solutes in ionic fluids [29]; and water-droplets within a bulk nematic [44]. A funda-

mental question in colloidal science is whether the colloids will stay dispersed in solution for

a given period of time, ie. if they are colloidally stable. Colloidal stability is a constant battle

between the attractive van der Waals interaction, which biases colloids to come together (or

“flocculate”), and some repulsive interaction, which varies depending on the specifics of the

colloid and solvent system. Two of the main repulsive interactions that frequently appear

in colloidally stable systems are steric repulsion and “double layer” electrostatic forces. The

repulsive force is steric in the case of nanoparticles with bulky ligands mentioned above:

two nanoparticles are prevented from assembling too closely because such a configuration

would necessitate significant overlap between their respective bulky ligand “clouds”. “Dou-

ble layer” forces occur when charged solutes, whose charged surface is the first of the two
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Figure 2.1: The van der Waals interaction energy of two spheres of radius R at a distance of
closest approach D. The exact expression is shown in blue, while the short distance (D � R)
limit is plotted in orange.

layers in the “double layer”, are placed within dilute electrolyte solutions, which respond

by associating a cloud of opposite charge near the surface forming the second of the layers,

and are the subject of the DLVO theory, which will be discussed in more detail in the next

section.

To make the discussion more concrete, consider two solutes interacting within a fluid

medium via van der Waals (vdW) interactions. Let us assume that these solutes are close to

one another, which allows us to neglect the time it takes for the electrons involved to react

to one another; this is known as the “nonretarded” limit [29]. The interaction energy can

then be written down as [29]

Uplate(D) = − A

12π

1

D2
, (2.26)
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for two large plates with separation D, or [29]

Usphere(D) = −A
6

[
2R2

(4R +D)D
+

2R2

(2R +D)2
+ log

(4R +D)D

(2R +D)2

]
, (2.27)

for two spheres of radius R and with distance of closest approach D. In the limit that

D � R, the interaction energy between spheres simplifies to

Usphere(D) = − AR
12D

. (2.28)

In both of these expressions, A is the Hamaker constant, which contains information about

the material of the solutes that are interacting as well as the medium they are interacting

through [29]. Figure 2.1 shows a plot of the sphere interaction energy versus separation, D.

The Hamaker constant can be computed via the Lifshitz theory [29], but in the media and

solutes we will be considering, A ∼ 5× 10−20J [25, 26].

The Hamaker constant is often small enough that at large separations, the vdW interac-

tion is weak, but when the separation is small, the power law nature of the interaction means

that it can overwhelm repulsive interactions. Then, for colloids to be stable, there needs to

exist a repulsive potential between them which, at some separation, outweighs the vdW po-

tential. For example, see Fig. 2.2, which compares the vdW interaction to a mock repulsive

potential. At a separation of ∼ 0.25R, the sum of the two potentials peaks at ∼ 2kBT .

This mock potential showcases that colloidal stability is often a matter of kinetics, rather

than thermodynamics. In the case of Fig. 2.2, a fluctuation of energy ∼ 2kBT , which occurs

relatively frequently, will be sufficient for the colloids to cross the barrier and find the global

free energy minimum at D = 0, irreversibly binding. Frequently, the term “stable colloids”

refers to colloids that are not thermodynamically stable, but instead have a potential peak

much larger than kBT and, hence, will not flocculate over any reasonable time scale.
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Figure 2.2: The van der Waals interaction energy of two spheres of radius R at a distance
of closest approach D paired with a mock repulsive, exponential potential.

2.3.1 The DLVO theory for flat plates

The Derjaguin-Landau-Verwey-Overbeek, or DLVO, theory is concerned with the interaction

between solutes with surface charge in a dilute ionic solution, and can be used to predict

whether these solutes will be colloidally stable. The DLVO theory describes the competition

between the van der Waals interaction, introduced above, and a repulsive interaction due to

the correlations between the charged colloid surface and ions in solution. Ions in solution

are treated in a DH paradigm, which means that all the approximations used in deriving the

DH theory apply here. The solute surface charge leads to a diffuse cloud of ions around each

solute, which act to repel other solutes with their own clouds of charge. Much like repulsive

steric interaction between ligands attached to a colloid surface, the accumulation of a dilute

cloud of charge around each solute in the DLVO theory leads to a free energy penalty when

these clouds overlap. Our ultimate goal is to study the stability of spherical colloids within

ionic fluids, but as a first step, we will consider a plate-like solute. We will then map

22



the interaction free energy between plates to spherical colloids using an approximation first

derived by Derjaguin.

We now provide a brief derivation of the DLVO theory from a linear response perspective.

Readers interested in a more traditional approach through the electrical potential are referred

to standard texts [29].

The strategy will be to take the charge density of the fluid induced by a single charged

plate and to superpose that charge density with that of an equivalent plate a distance D away.

When plates are separated by a large distance, D � 1/κD, an even simpler approximation

may be employed, namely, to approximate the two-plate profile up to the midplane by a

single-plate profile. As the plates approach from very large separations, the magnitude of

the charge density at the midplane begins to increase from 0 as the plates are no longer

completely screened out. The free energy due to the fluid as a function of separation, D, is

related to the “unscreened” portion of the charge density within expressions for the entropy

and electrostatic energy of the fluid [45, 46]. After computation of the “double layer” free

energy, the stability of the system can be determined by adding the free energy to the van

der Waals energies of the two plates: if a barrier much larger than the thermal energy results,

the colloids are said to be stable (see discussion in previous section).

From the past discussion of the DH theory in Sections 2.1 and 2.2, we know the re-

sponse function, Eq. 2.20. The charge density within a dilute ionic fluid induced by a

plate was also found, see Eq. 2.25. For convenience, define φ0 ≡ −qε1κD/(2a), so that

φ(z) = φ0 exp(−κDz).

The charge density induced by two plates a distance D away from each other is approx-

imated by the simple superposition of two single-plate charge densities. For plates with

surfaces at 0 and D,

φ2(z) = φ (z) + φ (−z +D) (2.29)

When D � 1/κD, we can further approximate the superposed charge density profile up to
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the midplane by the one-plate charge density profile:

φ2(z)
D�1/κD−−−−−−→ φ(z), z < D/2. (2.30)

We use the free energy for a DH fluid, Eq. 2.18, as a starting point, except here, due to

the one-dimensional symmetry of the plate-plate system, the free energy has an additional

prefactor 1/A which represents the area of the plate, and integration occurs only over z and

then only over a specific portion of z. To compute the free energy for the two-plate system,

let the separation be large, D � 1/κD. When the separation tends to the limit, the free

energy tends to a constant. As the separation decreases, the charge density at the midplane

starts to increase. This occurs because the fluid does not have enough space to fully screen

the surface charge of each plate. The free energy cost of the plate-fluid system at a separation

D is proportional to the magnitude of the unscreened charge [45, 46], or equivalently, to the

charge density due a single plate beyond the midplane, D/2:

F (D) =
σ3

2A

∫ ∞
D/2

dz a [φ2(z)]2 +
σ

2

∫ ∞
D/2

dz

∫ ∞
D/2

dz′ ρQφ2(z)V (|z − z′|)φ2(z′)

∼
aφ2

0σ

κD
exp (−κDD) .

(2.31)

Thus, the interaction between charged plates within a dilute solution of ions decays with the

same length scale, 1/κD, that characterizes the correlations between ions in an equivalent

bulk solution.

The colloidal stability of a particular solute-solvent system can be evaluated by taking

the sum of the free energy due to the solute-solvent interaction, discussed here, and the van

der Waals energy (see Section 2.3). When the electrostatic energy outweighs the vdW energy

at any separation by many multiples of the thermal energy, the colloids are said to be stable.

Because the DLVO theory follows DH in treating ions in solution, smaller Debye constant

(ie. lower ion concentration or higher temperature) leads to increasing stability.
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Up to this point, we’ve only discussed the stability of plate-like colloids, but it is much

more common that colloids are spherical. Fortunately, there is a simple approximation that

allows for the computation of the interaction between large spherical colloids in terms of

the interaction between plates. As we will see later in this work in Chapters 4 and 5, small

spherical colloids require some additional considerations (“small” or “large” size is relative to

the separation between particles), but for now, we lay out the Derjaguin approximation [29].

2.3.2 The Derjaguin approximation

Consider two large spherical colloids, each with radius R, at a separation D, with D � R.

To compute the interaction between spheres, here, say a general function gsphere(D) that

can be specialized to force per area or energy per area later, imagine that the surface of the

spheres are divided up into rings, radius r, which are interacting at a distance z(r). The rings

have radius 2πrdr, and so the interaction between spheres can be written, using gplate(D)

as the interaction between flat plates per unit area, as

gsphere(D) = 2π

∫ ∞
0

dr rgplate(z), (2.32)

where the upper bound of the integral at ∞ is due to the large colloid assumption. The

change of variables from r → z can be found using the diagram in Fig. 2.3, specifically

z = D + 2R (1− cos(θ))

r�R−−−→ D +
r2

R
.

(2.33)

The limit in the second line can be made due to the assumption that D � R, since the

colloid is so large relative to the interaction length scale that the interaction is assumed to

die out by the time r ∼ R.
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Figure 2.3: Schematic of the geometry used to derived the Derjaguin approximation. Two
spheres of radius R have a distance of closest approach D, with D � R. The interaction
between spheres is approximated as the integral of the interaction between plates a distance
z apart over ring-like area sections of area 2πrdr.
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The change of variables in the integral in Eq. 2.32 can then be performed:

gsphere(D) = πR

∫ ∞
D

dz gplate(z). (2.34)

If the g functions here are forces per area, then the integral on the right hand side becomes

the interaction energy between the two plates, ie.

fsphere(D) = πRUplate(D). (2.35)

The Derjaguin approximation tells us that spherical and plate-like colloids interact with

the same decay length and differ only by a prefactor. We will return to the Derjaguin

approximation in Chapter 4, where we study quasi-spherical nanocrystal colloids in molten

salts and ionic liquids. There, the assumptions of dilute ions of the DH and DLVO theories

are patently false, and new plate-plate interactions will have to be developed. Nonetheless,

with only slight modifications, the Derjaguin approximation allows us to transfer these plate-

plate interactions into sphere-sphere ones.

Next, we introduce some recent experimental results that highlight the breakdown of the

DH and DLVO theories. These results serve to motivate our development of theory to treat

the high ionic strength regime.

2.4 Selected experiments beyond the Debye regime

2.4.1 Measurements of screening lengths

Recent advances in surface-force apparatus techniques pioneered by the Israelachvili lab have

allowed for the measurement of screening lengths in fluids with high ionic strength [21, 22, 1].

The experiment consists of the immersion of quartz or gold plates within a solvent, and the

variation of the separation between the plates. The apparatus allows for careful measurement
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of the force on, and the distance between, the plates. The results have been surprising. The

first measurement was reported by Gebbie and coworkers [21] of an ionic liquid (BMIM-

NTf2), and showed that the screening length was far in excess of the predictions of the DH

theory (ie. κs > κD, where κs is the measured screening length), and that the repulsive

force was monotonic. They proposed that the ionic liquid should not be considered as

fully dissociated, but instead as a percolating network, with only a small fraction of ions

dissociated and able to screen. With fewer ions available to screen, the DH theory might

still be valid.

After the work of Gebbie et al. [21, 47], members of the Perkin lab, initially skepti-

cal [48, 49], confirmed Gebbie et al.’s experimental results, and extended the measurements

to a variety of solvent systems over a range of concentrations [22, 1]. They found that the

screening length followed a non-monotonic trend, see Fig. 2.4. For κDσ � 1, they found that

the screening length and Debye length were equivalent, κsσ ∼ κDσ. At around κDσ ∼ 1,

however, the screening length began to trend as κsσ ∼ (κDσ)−2. Lee and coworkers [1]

proposed a scaling argument to explain the observed screening length trend and the mono-

tonic nature of the repulsion. The physical picture they proposed was of high ionic strength

fluids as similar to ionic crystals with many defects. Ionic crystals do not screen because

the ions that make them up are immobilized within a crystal lattice. However, allowing

for mobility of defects leads these defects to carry an effective charge. Thus, they propose

that the effective charge carriers within these dense ionic fluids are defects, and not the ions

themselves, which allows a reduction in the concentration of effective charge carriers and

allows the application of DH for these carriers. To date, no statistical mechanical theory or

molecular simulation has confirmed this proposed physical picture.

More recently, Gaddam and Ducker [23] reported another measurement of screening

lengths in high ionic strength ionic fluids using a different experimental apparatus. Rather

than a surface force apparatus, they used a thin, sloping crack between a silicon wafer bonded
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Figure 2.4: Measurement from Lee et al. [1] surface force aparatus experiments showing the
measured screening length, κsσ as a function of the Debye constant, κDσ, both scaled by
the estimated ion size σ. The measurement is for a variety of ionic fluids and shows that for
small Debye constant, the Debye-Hückel theory makes accurate predictions of the screening
length. However, increasing the Debye constant past the inverse ion size, κDσ > 1, leads to
a break from the DH theory, and specifically, a scaling of κsσ ∼ (κDσ)−2. Data reproduced
from Ref. [1] with permission.
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to a glass wafer. The crack was filled with aqueous solutions of LiCl, CsCl, or NaCl over a

wide concentration range (0.5-10 M), with a small concentration of a flourescein ion. They

characterized the distance between the crack surfaces at each point using the interference of

one color of light, and measured the concentration of fluorescein at each point based on its

fluorescence intensity. They reported the same trend of screening length as the Perkin lab.

We highlight what we view to be a few key results of the Israelachvili, Perkin, and

Ducker labs. First, the interaction between plates is shown to be monotonic. As we will see

in our discussion of some theories that go beyond DH in Section 2.6, the high ionic strength

regime is predicted to have an oscillatory charge density. We might reasonably suspect that

an oscillatory charge density implies an oscillatory interaction between solutes (we confirm

this in Chapter 4). Thus, it appears that some new physics is involved in producing these

long-range monotonic forces, perhaps a reduction in ions available to screen as suggested

above [21, 1]. Second, the trending of the screening length as κsσ ∼ (κDσ)−2 is intriguing.

Though different theories, discussed in Section 2.6 and 3.4, disagree as to how the screening

length should trend, none of them predict it to scale with the power −2. Finally, the results

hold for a wide range of solvent systems and two different experimental apparatus, which

indicate that these results are not just due to, for example, some unexpected effect in bulky

ionic liquids, but are instead a fundamental feature of fluids with high ionic strength. These

experiments provide the motivation to study a general, minimal framework for ionic fluids

in Chapter 3.

2.4.2 Unexpected stability of nanocrystals in molten salts and ionic liquids

Molten salts and ionic liquids have been used for, or proposed to be used for, a variety of

scientific and industrial endeavors. These include thermal energy storage for photovoltaic

power plants [50] and as synthesis environments for a broad range of materials, including

nanoparticles [27] and pharmaceutical products. Recent work in the Talapin lab has demon-
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strated that a variety of bare nanocrystals (or NCs), including semiconductors such as CdSe

and metals such as Pt, are colloidally stable in certain molten salts and ionic liquids [25, 26].

This is surprising because established mechanisms such as steric or electrostatic stabiliza-

tion through the DLVO theory cannot be applied here. Dispersions of NCs might be used

to modify the thermal conductivty of a molten salt [50], increasing efficiency as an energy

storage/transfer medium, or as a means to alter local concentrations of reactants within an

ionic liquid synthesis environment. Molten salts or ionic liquids might also be useful syn-

thesis environments for NCs themselves. On the theoretical front, theory and simulation of

charge-dense fluids remain an underexplored subject. Molecular dynamics simulations are

expensive, and much of the theory applies only for dilute solutions of ions. As discussed in

the past section, standard wisdom in the field of ionic liquids regarding ion dissociation and

screening length has recently been overturned by new experimental results, indicating the

need for new theory [21, 22, 1]. We began a collaboration with the Talapin lab to study the

colloidal stability of NCs in charge-dense fluids [25, 26], and these studies are detailed in

Chapters 4 and 5. We found, using molecular dynamics models, that mean field theory and

linear response could explain a surprising number of the results, but there were some clear

breakdowns of the theory and MD models as well.

Before discussing some recent work on the theoretical front to study ionic fluids with

high ionic strength in Section 2.6, we take a brief detour to introduce some liquids state

concepts. These will help give us useful intuition for the high ionic strength regime which,

as we will see, theory suggests can be thought of as having “liquid-like” correlations between

ions, contrasting to the low ionic strength DH regime with “gas-like” ion correlations.

2.5 Spatial correlation functions and the structure of liquids

The liquid state is a consistent backdrop in the work that follows, and so it behooves us to

briefly review some of the basics of how liquid structure is described. Due to the fluctuation-
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Figure 2.5: Cartoons showing structuring in a simple liquid of hard spheres in two dimen-
sions. (a) Cartoon of two-dimensional hard sphere fluid. Particles are arranged roughly in
concentric shells. The concentric circles are meant as guides the eye to draw attention to
the arrangement into concentric shells. (b) The radial distribution function, or RDF, g(r),
captures the correlations between particles at a distance r from a particle fixed at the origin.
The normalization is such that a value of 1 corresponds to the ideal gas, or uncorrelated,
case.

dissipation relation, discussed in Section 2.2, the structure of an unperturbed liquid provides

detailed information about how that liquid will respond to the inclusion of a solute. With

information about the bulk structure, then, predictions can be made about how solutes

interact with fluids and, as a result, with each other.

The reader is referred to standard statistical mechanics texts for a derivation of the pair

distribution function, which characterizes the spatial correlations between particles [34, 51],

see cartoon in Fig. 2.5a. Physically, the pair distribution function is a measure of the

probability that, given a particle fixed at r, another particle is observed at position r′. It is

normalized such that it tends to 1 in the large separation limit, |r−r′| → ∞, as the particles

become uncorrelated, similar to an ideal gas. One way to express the result of standard

derivations is

gαβ(r, r′) =

〈
N∑
i

N∑
j 6=i

δαti δ
β
tj
δ(r− ri)δ(r

′ − rj)

〉
, (2.36)
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for an N particle system of types {ti}, where α, β ∈ {ti}, δ
η
λ is 1 if η = λ, and zero otherwise,

δ(r) is 1 if r = 0 and 0 otherwise, and 〈. . . 〉 denotes an ensemble average. In isotropic systems,

gαβ(r, r′)→ gαβ(r) and the function becomes known as the radial distribution function. A

mock radial distribution function is plotted in Fig. 2.5b, which shows the characteristic

exponentially damped oscillations which decay to 1, indicating that particles have become

uncorrelated. The peaks roughly correspond to the packing of concentric shells of particles

around a central one, see Fig. 2.5a for a cartoon.

A closely related spatial correlation function is referred to as the density-density correla-

tion function which measures fluctuations in the density:

Gαβ(r, r′) =
〈
[ρα(r)− 〈ρα(r)〉][ρβ(r′)− 〈ρβ(r′)〉]

〉
= 〈ρα(r)〉〈ρβ(r′)〉

(
gαβ(r, r′)− 1

)
+ 〈ρ(r)〉δ(r− r′),

(2.37)

where ρ(r) =
∑N
i δ(r − ri) is the local density and ρα(r) =

∑N
i δαtiδ(r − ri) is the local

density of type α. As we saw in Section 2.2 the structure of the fluid, encoded in the

density-density correlation function, provides information about how the fluid responds to

perturbations such as the inclusion of solutes, a property that we will make extensive use of

in our description of the interactions between solutes and fluids.

In ionic fluids, which will be the subject of the large part of this work, the charge-charge

correlation function supersedes the density-density correlation function in importance to

some degree. It is defined somewhat similarly to the density-density correlation function as

Gq(r, r
′) =

〈[
ρq(r)− 〈ρq(r)〉

] [
ρq(r

′)− 〈ρq(r′)〉
]〉

=
∑

i∈{+,−}

∑
j∈{+,−}

〈ρi(r)〉〈ρj(r′)〉qi qj gij(r, r′) + 〈ρ(r)〉δ(r− r′),
(2.38)

where ρq =
∑N
i qiδ(r− ri) is the local charge density and qi = +1 when i = + and qi = −1

when i = −.
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Next, we discuss some recent theoretical frameworks that have been developed to treat

the correlations between ions in ionic fluids, which DH theory neglects. As we will see,

we can think of the high ionic strength regime as having “liquid-like” correlations between

ions, while the DH regime has “gas-like” ones. This intuition will be further developed in

Chapter 3.

2.6 Selected theory beyond Debye and Hückel

A variety of theoretical techniques have been used to extend the DH theory to the high κDσ

regime. The literature is extensive, and we only discuss a few examples, but the common

thread amongst these works is the more careful accounting for correlations, or short-range

interactions, between ions. One such method was by Attard, who used a standard closure

from the theory of liquids [35]. In that work, he writes out the correlation functions for

charged hard spheres, also known as the restricted primative model (or RPM), and uses the

hypernetted chain approximation in order to produce a closure for the Ornstein-Zernicke

equation. Another approach was developed by Kjellander and coworkers [52, 53, 54], who

incorporate the short-range correlations into an effective ion atmosphere or “dressing” of

the ions. A third approach was pioneered by Lee and Fisher who studied the effect of

a perturbing oscillatory potential that intuitively arises from the preference of oppositely

charged ions to arrange in alternating layers [55]. Some more recent works have built on and

simplified these past works including work by Frydel [56], who showed how a treatment of a

finite-sized charge as having some distribution (such as Gaussian) within its spherical radius

could lead to a non-DH regime, and work by Adar et al. [57] showing that accounting for

the finite size of ions can provide a simple route to the non-DH regime. We will discuss the

method of Adar et al. [57] momentarily in Section 2.6.1, as their method compliments work

to be discussed later in Chapter 3.

The unifying feature of all the theories mentioned above is a regime at large κDσ where
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spatial correlations between ions cannot be ignored as they are in the DH theory [32]. Indeed,

the manifestation of these correlations as oscillations in the charge density was predicted

long ago by Kirkwood [58]. In this large κDσ regime, the charge correlation length can

become much longer than the screening length predicted by DH theory, qualitatively similar

to observations of anomalous screening in the aforementioned surface force experiments.

More recent work based both on simulations and phenomenological theories reproduce this

oscillatory, large κDσ regime [53, 59, 60, 61, 56, 62, 57]. However, none of these theoretical

studies reproduces the universal scaling observed in Ref. [1]. We now discuss the model of

Adar et al. [57].

2.6.1 Accounting for the finite size of ions in a continuum theory for

charged hard spheres

Consider a fluid of hard sphere particles of diameter σ, which contain point charges at their

centers of valence q = ±1. This model is sometimes referred to as the restricted primitive

model (RPM) [35]. The goal will be to study the correlations of charges in this fluid at

low temperatures or high concentrations relative to the dilute regime studied by Debye and

Hückel. The free energy will take the same form as in the DH theory, Eq. 2.18, but we will

modify the electrostatic potential to account for the finite size of the RPM particles. The

electrostatic potential, V , is given in terms of the charge density, φ, by the Poisson equation,

Eq. 2.1, whose Fourier form is written

Ṽ (k) =
4π

k2
φ̃(k). (2.39)

The Coulomb interaction, 1/r in real space or 4π/k2 in Fourier space, is the solution to

the Poisson equation for the potential due to a point charge, ie. φ(r) = δ(r) leading to

˜φ(k) = 1. Here, we modify the electrostatic potential to account for the hard sphere finite
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size by postulating a modified electrostatic potential of the form

V (r) =
1

r
Θ(r − σ), (2.40)

where Θ(r) is the Heaviside step function, defined as

Θ(r) =


0 , r < 0

1 , r > 0.

(2.41)

The Fourier form of the potential, Eq. 2.40, is then

Ṽ (k) =
4π

k2
cos (kσ) . (2.42)

The free energy for this RPM system with modified electric potential, Eq. 2.42, in place

of the potential due to point charges, can be written from Eq. 2.18 as [57]

F =
σ3

2

∫
d3k

(2π)3

∣∣∣φ̃(k)
∣∣∣2 [a+

4πρQ

k2
cos (kσ)

]
− h̃(k)φ̃(−k), (2.43)

and following from Section 2.2, the response function can be read off from the free energy as

χ̃(k) =
1

aσ3

k2

k2 + 4πρQ
a cos (kσ)

. (2.44)

Then with the linear response relation, Eq. 2.20, and a simple model external potential

h(r) = qεσ3δ(r), the charge density is

φ̃(k) =
qε

a

k2

k2 + 4πρQ
a cos (kσ)

. (2.45)

Though the charge density, Eq. 2.45, can’t be analytically inverse Fourier transformed,
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there are two limits worth examining. In the limit of point charges, σ → 0, the charge density

reduces to that of the Debye-Hückel theory, with κD =

√
4πρQ
a , compare to Eq. 2.22. The

other interesting limit is the small-k limit, expanding the cosine in the denominator to

fourth-order and rearranging coefficients,

φ̃(k)
kσ�1−−−−→ qε

a

(
k

κD

)2 [σ4

24
k4 +

(
κ−2
D −

σ2

2

)
k2 + 1

]−1

= 24σ−4 qε

a

(
k

κD

)2
[
k4 + 12σ−2

(
2

(κDσ)2
− 1

)
k2 + 24σ−4

]−1

,

(2.46)

This charge density can be inverse Fourier transformed analytically. Using the second line

in Eq. 2.46 with α = 6σ−2

(
2

(κDσ)2
− 1

)
, β = 24σ−4, the result is, from Appendix Eq. 9.13,

φ(r) =
A

4πr
exp (−κr) sin (ωr + θ) , (2.47)

when −
√
β < α <

√
β (corresponding to low temperature), and, from Eq. 9.12,

φ(r)
r�1−−−→ B

4πr
exp (−κr) , (2.48)

when α >
√
β (corresponding to high temperature) with A and B normalization constants

dependent on α and β, κ and ω the inverse length scales which are found by analyzing

the poles of the Fourier form of the charge density function, Eq. 2.46, and θ a phase factor

enforcing charge neutrality (see Appendix Section 9.3 for more details about the computation

and the constants).

The key point here is that this k4 expansion is sufficient to predict two regimes. At

high temperatures, the charge density due to an origin charge decays with the same form

as in the Debye-Hückel theory, while at low temperatures, the decay is oscillatory in nature.

Importantly, as discussed in Appendix Section 9.3.1, the scaling of the decay length 1/κ

changes between the two regimes as well. Specifically, in the high temperature regime, the
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decay length increases with temperature, while in the low temperature regime it decreases

with temperature. Physically, the decay length trending with respect to temperature can

be understood as corresponding to “gas-like” and “liquid-like” correlations. For a gas, an

increase in temperature at constant pressure leads to an expansion and, hence, an increase

in the mean separation of particles. When the “gas” particles are ions, an increased mean

separation means fewer ions are around to screen potentials which means that potentials

persist for a longer distance. In contrast, for a liquid, an increase in the temperature means

that the liquid becomes less ordered and so oscillations die out more quickly. The existence

of the two screening regimes is qualitatively in agreement with the results of the Perkin lab,

discussed earlier in Section 2.4 [22, 1], but there are some important differences between the

k4 theory and the experimental results. For one, in the “non-DH” regime of the theory,

charge correlations are predicted to decay in an oscillatory manner, while the Perkin results

are monotonic. And, as we will discuss in more detail in Chapter 3, next, the “non-DH”

regime predicted by the k4 theory does not display the same scaling of the screening length,

1/κ, as the parameters of the fluid are manipulated so as to vary the Debye constant, κD.

Motivated to understand these similarities and differences in more detail, we explore the

frustrated Ising model next.

Before moving on, note that although the poles and inverse Fourier transform can’t be

computed analytically for the full charge correlation function Eq. 2.45, the real space form is

similar to the k4 forms Eq. 2.47 and 2.48, (ie. it displays damped oscillatory or exponential

correlations, depending on the regime) and the poles can be computed numerically. The

results are qualitatively similar to the k4 expansion. Though the full form has more infor-

mation about the short-range structure and correlations of the RPM model, the expansion

to fourth order in the denominator preserves the essential features.

In the next three chapters, Chapters 3–5, we use the simple tools, such as linear response,

that we have developed in this chapter with surprising success to accomplish our strategic
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vision of, (i) describing ion-ion correlations (Chapter 3); (ii) using linear response to find

solute-ion correlations (Chapters 4 and 5); and, (iii) computing the solvent-mediated interac-

tion between solutes (Chapters 4 and 5). However, we also find breakdowns in these simple

theoretical tools, which is why our simulations in those sections are so important, as they

allow us to go beyond the mean field limit. We find some experimental results that cannot

be reproduced with simulation or theory (in Chapter 5), which demonstrate that, although

these tools are far reaching, they do have their limits. Overall, it is surprising and heartening

that such simple theoretical tools can be applied with any success at all to these complicated

and strong-interacting ionic fluids. Without further ado, we introduce the charge-frustrated

Ising model.
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CHAPTER 3

DESCRIBING SCREENING IN DENSE IONIC FLUIDS WITH

A CHARGE-FRUSTRATED ISING MODEL

This chapter reproduces material previously published in Ref. [24], with the permission of

AIP publishing. That work was in collaboration with Kinjal Dasbiswas, Dmitri V. Talapin,

and Suriyanarayanan Vaikuntanathan. I was the first author, and contributed to both theory

and simulation portions of the work. I also wrote the simulation code from scratch.

In the past chapters we have shown that linear response ideas can be applied to dilute

solutions of ions, as in the case of the DH and DLVO theories. We have also introduced

one framework that uses linear response ideas to move beyond the case of dilute ions by

accounting for the finite size of ions in Section 2.6.1 [57]. Here, motivated by the new

physics reported by a number of experimental labs [21, 22, 23], we study a lattice model

with both mean field theory and simulation to build a foundation that captures both DH

and non-DH regimes with the minimum possible complexity. The mean field theory we

develop turns out to be a limiting case of the theory discussed in Section 2.6.1, and so the

lattice model we use here, the charge-frustrated Ising model, in a truly minimal model for

these two regimes. As a minimal model, it provides a basis that we extend in the next

two chapters to model systems accompanying the experimental work of our collaborators.

And though we don’t, in this chapter, develop the model specifically to describe the solvent

response to the inclusion of solutes, the linear response formalism we’ve developed in the

past chapter leads us to expect that we can apply the response functions that we derive here.

We will return to the question of solutes in the next two chapters. For now, we will study

the minimal charge-frustrated Ising model.

Charge correlations in dense ionic fluids give rise to novel effects such as long-range

screening and colloidal stabilization which are not predicted by the classic Debye-Hückel

theory. We show that a Coulomb or charge-frustrated Ising model, which accounts for both
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long-range Coulomb and short-range molecular interactions, simply describes some of these

ionic correlations. In particular, we obtain at mean field level and in simulations, a non-

monotonic dependence of the screening length on the temperature. Using a combination of

simulations and mean field theories, we study how the correlations in the various regimes

are affected by the strength of the short ranged interactions.

3.1 Introduction

The thermodynamic properties of ionic fluids are governed by long-range Coulomb inter-

actions between ions [32] in addition to the short-range molecular interactions present in

neutral liquids. Strong electrostatic correlations lead to counter-intuitive phenomena in

dense ionic fluids such as charge inversion [63, 53, 59, 60, 61, 56, 62], altered capacitance at

electrode-fluid interfaces [61, 64, 65, 66], and the recently observed “anomalous screening”

in surface force experiments [21, 22]. These effects could be important in the self-assembly

of a variety of biomolecules [67] and soft materials [68]. Electrostatic correlations can be

particularly pronounced in molten salts and ionic liquids which comprise ions alone and no

neutral solvent molecules. The novel properties of such purely ionic fluids make them useful

for a variety of scientific and technological applications, such as energy storage [69, 70], as

industrial lubricants [71], and of serving as media capable of supporting stable colloidial

nanoparticles. [25, 27].

Pure ionic fluids are ideal model systems for theoretical study of the statistical physics of

strongly correlated electrostatics without the complicating ion-specific effects of hydration

in aqueous solution [72]. A theoretical description of dense ionic fluids must go beyond the

classic Debye-Hückel (DH) theory, which is valid only for dilute electrolytes with weak inter-

ionic correlations [73], or equivalently, small inverse Debye screening length (also known as

the Debye constant) in relation to the inverse molecular size: κDσ ≡
√

(4πρq2)/(εkBT )σ �

1, where ρ is the concentration of ions (per unit volume), q is the unit charge, ε is the
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dielectric constant of the electrolyte, kBT is the thermal energy, and σ is the ion diameter.

Indeed, recent surface force experiments using concentrated solutions of salts and ionic liquids

measure screening lengths, 1/κs, well in excess of the DH prediction, 1/κD, and show non-

monotonic dependence of κsσ on κDσ [21, 22, 1]. Especially surprising is the universal

scaling collapse of κsσ when plotted against κDσ, despite the use of a range of ion types,

solvent types, and ion concentrations [22, 1]. The particular scaling behavior in the dense

ionic regime, κsσ ∼ (κDσ)−2, is not predicted by existing theoretical results, suggesting the

need to go beyond standard approaches in the field.

A variety of theoretical techniques have been used to extend the DH theory to the strong

Coulomb coupling or high κDσ regime [74]. To take two examples, Attard uses a standard

closure from the theory of liquids [35], while Lee and Fisher generalize the DH theory by

considering an oscillatory potential that intuitively arises from the preference of oppositely

charged ions to arrange in alternating layers [55]. Both of these theories result in a regime

at large κDσ where spatial correlations between ions cannot be ignored as they are in the

DH theory [32]. Indeed, the manifestation of these correlations as oscillations in the charge

density was predicted long ago by Kirkwood [58]. In this large κDσ regime, the charge cor-

relation length can become much longer than the screening length predicted by DH theory,

qualitatively similar to observations of anomalous screening in the aforementioned surface

force experiments. More recent work based both on simulations and phenomenological the-

ories reproduce this oscillatory, large κDσ regime [53, 59, 60, 61, 56, 62]. However, none of

these theoretical studies reproduces the universal scaling reproduces in Ref. [1].

Here, we use a model framework to investigate long length scale phenomena in ionic fluids:

the Coulomb or charge-frustrated Ising model (FI) [75, 76, 65], a lattice model which accounts

for both the long-range Coulomb and the short-range molecular interactions present in ionic

fluids. While many statistical mechanical formulations of ionic correlations treat ions as

charged hard spheres within the minimal Restrictive Primitive Model (RPM) [77, 35], we call

42



attention here to the importance of short-range attractive interactions, such as dispersion (or

van der Waals) forces. The short-range molecular interaction is included in the FI model as a

nearest neighbor “ferromagnetic” interaction (similar molecular species tend to attract), and

we show that it controls the crossover between the small and large κDσ regimes. Intuitively,

the length scale of the short-range interaction, lc, competes with that of the electrostatic

interaction, 1/κD, and when the two become similar, the DH theory breaks down.

In the rest of the paper, we first introduce the FI model and its simple, continuum mean

field form which is sufficient to predict a crossover in regimes between small and large κDσ.

The mean field theory is only valid when the ratio of Coulomb and ferromagnetic interaction

strength is small, and fails as this ratio is increased. We then present our Monte Carlo

simulation results. The simulation results are quantitatively well described by the mean field

theory in the limit of low Coulomb interaction strength and are in qualitative agreements

with them in other regimes. The simulations allows us to comment on the screening behavior

in regimes inaccessible by the mean field theory. The simulations and the mean field theory

also elucidate how a short-ranged attractive interaction can modify the screening behavior

of ionic fluids, such as the crossover to the strong Coulomb coupling regime as well as the

scaling of the screening length with the Debye constant seen in simulations.

3.2 Model

We study the Coulomb or charge-frustrated Ising model on a three dimensional (d = 3)

simple cubic lattice with each site occupied by a positive or negative charge as a simple

model for ionic fluids. Since the positive and negative ions in an ionic fluid are chemically

different species, the differences in their size or van der Waals interactions may lead to a

preferential attractive interaction between like ions [65]. In this model, the charges interact

through a nearest-neighbor ferromagnetic Ising interaction, representing short-range molec-

ular attraction between like charges, as well as the Coulomb interaction. The corresponding
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Hamiltonian is

H =
1

2

N∑
i

N∑
j 6=i

qi

(
Q

rij
− Jij

)
qj , (3.1)

with N the number of lattice sites, qi = qri = ±1 the instantaneous charge density at site i

located at position ri, Q > 0 the Coulomb interaction strength, rij = |ri − rj |, and

Jij =


J i, j nearest neighbors,

0 otherwise,

(3.2)

where J > 0 governs the strength of the Ising interaction. The ensemble average of the

charge density 〈qr〉 → 0 in the bulk and the unit of length is the lattice length, or nearest

neighbor distance, σ.

We can use the Fourier form of the charge-charge correlation function G̃q(k) = 〈qk q−k〉

(sometimes referred to as the static charge structure factor), to extract a screening length,

where qk is the Fourier transform of the instantaneous charge density qr. In the continuum

limit of the mean field theory, kσ � 1, the Fourier form of the charge-charge correlation

function has the form [65],

ρ2G̃q(k)/T = k2/
[
σ2Jk4 + (T − 2dJ) k2 + 4πρQ

]
, (3.3)

with T the temperature and the Boltzmann constant, kB , set to 1, and ρ = 1/σ3 in this

study. The Ising critical temperature is defined by T̄ Ic ≡ 2dJ (overbarred variables are

continuum mean field results). Inverse Fourier transforming G̃q(k) gives the charge-charge

correlation function, Gq(r, r
′) = 〈qr qr′〉. The continuum G̃q(k) in Eq. 3.3 corresponds to,

for an isotropic fluid at large r, the real space charge correlations given by,

Gq(r) =
A

4πr
exp(−κsr) sin(ωr + θ), (3.4)
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with A a normalization constant dependent on the parameters T, J and Q; ω, the spatial

oscillation frequency; θ, a phase factor fixed by the electroneutrality condition; and κs, the

calculated screening constant corresponding to the decay of charge correlations. The latter

may differ from the Debye inverse screening length, which for the FI model is identified with,

κD ≡
√

4πρQ

T
. (3.5)

The phases and regimes of the FI mean field theory are revealed by examining how the

inverse length scales κs and ω vary while changing the parameters Q, J , and T . In the rest

of the paper, we fix the value of Q and treat κD as a parameter. By varying κD at fixed Q

we access different temperature regimes.

Long-range modulated order characterizes the phase below the critical point [76, 20], and

so the FI continuum mean field critical temperature is simply given by the temperature at

which κsσ → 0 from positive values:

T̄FIc = T̄ Ic −
√

16πσ2JρQ. (3.6)

In this work we focus on the fluid-like regime above the critical point where there is no

real long-range order (κsσ > 0). There are two regimes above the critical point which are

differentiated by the value of ωσ: when T is very high, ωσ = 0, while at intermediate

temperatures, ωσ > 0. The transition between these two regimes occurs at

T̄ ∗ = T̄ Ic +

√
16πσ2JρQ. (3.7)

At high temperatures, T > T̄ ∗, or equivalently, small κDσ, charge correlations decay expo-

nentially. Further, the screening constant tends to the Debye constant when temperature

is very large, T � T̄ ∗: κsσ → κDσ. This small κDσ regime corresponds to low Coulomb

45



coupling, and is equivalent to the Debye-Hückel theory. For large κDσ, obtained at low

temperatures (equivalent to strong coupling), oscillations with frequency ωσ appear in the

charge correlations, while the inverse decay length κsσ decreases with κDσ:

κ̄s =
1

2l̄c
≡

√
T − T̄FIc

4σ2J
, T < T̄ ∗, (3.8)

where lc is the mean field FI correlation length, and

ω̄ =

√
(κ̄∗s)

2 − (κ̄s)
2, T < T̄ ∗, (3.9)

with

κ̄∗s ≡
(

4πρQ

σ2J

)1/4

(3.10)

the maximum screening constant, achieved at T̄ ∗ (see the peak in Fig. 3.1, which occurs at

the κ̄∗Dσ corresponding to T̄ ∗, Eq. 3.7). Thus, in the FI mean field theory, κ̄∗Dσ describes the

transition between a DH-like regime with “gas-like” charge correlations and a second regime

with “liquid-like” charge correlations where κsσ has inverse dependence on temperature as

in the DH regime: κsσ ∼ (κDσ)−1. The temperature dependence of κsσ in the “liquid-like”

regime can be seen in Eq. 3.8 when T̄FIc � T < T̄ ∗. The mean field prediction for κsσ

is plotted against κDσ in Fig. 3.1 for ρQ/J = 0.5/σ2. The analogy with gas and liquid-

like correlations is useful intuitively (and has been noted by others in connection with the

so-called Fisher-Widom line [56]), but one important difference here is that the oscillation

frequency is not fixed by the ion size, and can instead vary significantly for different κDσ

(see ω̄σ given in Eq. 3.9).

The correlation length associated with short-range Ising interactions, lc, defines a molec-

ular length scale in addition to the lattice size, σ. In Fig. 3.1, we plot the inverse length

scales associated with the competing interactions of the FI model: namely, the Debye con-
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Figure 3.1: Mean field screening constant, κsσ, identified with the inverse decay length of
charge correlations, displays non-monotonic trend as the Debye screening constant, κDσ =√

4πρQ/Tσ, (Eq. 3.5) is increased, plotted here for ρQ/J = 0.5/σ2. The solid black line
shows the predicted screening constant, κs, in the two regimes. Note the inverse dependence
of κs on T in the two regimes (see Eq. 3.8). Near, but slightly above the regime change, the

screening constant from simulation shows an apparent scaling: κsσ ∼ (κDσ)−1. The dashed
line shows the Debye constant κDσ, and the dotted line shows the temperature scaling of the
inverse Ising correlation length

√
T/(σ2J) ∼ 1/lc. The dash-dotted line is a second inverse

length scale which goes as 1/lc for small κDσ; it merges with κsσ at the regime change κ̄∗Dσ,
which also marks the peak in the screening constant, κ̄∗sσ.

stant, κDσ, originating in Coulomb interactions, and the inverse FI correlation length, l−1
c ,

given in Eq. 3.8. The larger of the two length scales approximately determines the effective

screening length, κ−1
s , found within the FI model. The regime change of screening lengths

in ionic fluids may then be understood in terms of these two competing length scales that

are equal near the crossover point, κ̄∗Dσ. At small κDσ, the correlations between ions are

dominated by electrostatics, while at large κDσ, the short-range Ising correlations dominate.

Importantly, even in the regime dominated by short-range interactions, electrostatics still

plays a vital role, placing constraints on the system which appear as electroneutrality and
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Figure 3.2: Spatial correlations in FI model for various inverse Debye screening length,
κD, for the parameter ρQ/J = 0.5/σ2. a, absolute values of charge-charge correlation
functions, r|Gq(r)|, plotted on log-linear scale for various Debye constants. For κD �
κ∗D, the correlations decay purely exponentially as shown in the bottom two plots, while
oscillations appear when κD � κ∗D, see the top two plots. The solid black lines correspond
to the envelope of these functions from which κs can be extracted. The dotted black line
is the DH prediction for the decay of correlations. b, Fourier charge correlation functions
scaled by temperature, G̃q(k)/T , for various κD. j is an integer in [0, L). For small k, the

correlation functions scale as k2 (solid black line). For κD � κ∗D, G̃q(k) plateaus when k
becomes large, but as κD increases, oscillations appear. The peak at k ∼ 1 shifts towards
larger k with increasing Debye constant. The largest k value peak corresponds to the lattice
length σ.

higher moment conditions [77, 35].

At large ρQ/J [ρQ/J > d2/
(
4πσ2

)
], the continuum mean field theory breaks down, as

noted by Grousson and Viot [42]. One way the breakdown in the theory can be seen is

through the FI critical temperature, Eq. 3.6, which becomes unphysically negative for large

ρQ/J . The regime of validity can also be cast in terms of κ̄∗sσ, Eq. 3.10: (κ̄∗s)
−1 > σ/

√
d

for validity. This form makes clear that the breakdown occurs when the minimum screening

length for the system becomes similar to the lattice cell size. Grousson and Viot offer a

correction by explicit treatment of the lattice [42], neglected here, and another route to

improve the theory might be a more careful treatment of the finite size of ions. A third

method to go beyond mean field theory, the incorporation of fluctuations, was considered
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as the correlation length is strongly renormalized near the critical temperature. [40, 19]

However, because the regimes we study are at temperatures far above criticality, the mean

field results are not changed qualitatively. We use simulations of the FI model to investigate

screening lengths and crossovers in the regime where the mean field theory breaks down.

3.3 Simulation

We perform Monte Carlo simulations of the FI model to investigate its screening length

behavior, see snapshots from simulation in Fig. 3.3. We study parameter ranges strictly above

the FI critical point [76]. We simulate a wide range of temperatures and extract the charge-

charge correlation function, Gq(r), from simulations (see Fig. 3.2a for ρQ/J = 0.5/σ2). For

small κDσ, κDσ < κ∗Dσ, the charge-charge correlation functions trend purely exponentially

as predicted by the DH theory. For large κDσ, κDσ > κ∗Dσ, oscillations develop. By fitting

the envelope of r|Gq(r)|, which has the form of a decaying exponential (mean field, or large

r, form of Gq(r) shown in Eq. 3.4), we can find the screening constant for a given κD. We

plot the trending of the screening constant with κDσ for ρQ/J = 0.5/σ2 in blue dots in

Fig. 3.4. For small κDσ, agreement between the DH theory, the continuum FI mean field

theory, and the FI simulation is excellent. As κDσ increases beyond κ∗Dσ, estimates of the

screening constant from both simulations and mean field theory begin to fall, with mean

field scaling as in Eq. 3.8 and simulation scaling similarly: roughly as (κDσ)−1 near the

screening constant peak. Overall, the agreement between the continuum mean field theory

and simulation is excellent for small ρQ/J . The mean field theory is still reasonable at

moderate ρQ/J , for example, see Fig. 3.5 where ρQ/J = 1/σ2.

Fitting the envelope of the charge-charge correlation function, Gq(r), works well to ex-

tract the screening constant except when the screening constant is large. In principle, the

oscillation frequency can also be extracted by fitting a decaying oscillatory function, such

as Eq. 3.4, to simulation data directly. However, due to constraints arising from the finite
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Figure 3.3: Snapshots from simulation for different temperatures with ρQ/J = 0.5/σ2. Plus
charges are brown, minus charges are blue. Simulations are visualized using Ovito [2]. a,
T=3. b, T=5. c, T=20. d, T=100.
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Figure 3.4: Screening constant, κsσ, for different extraction methods and oscillation fre-
quency, all from simulation for ρQ/J = 0.5/σ2 and compared with theory. Solid and dashed
black lines shows mean field theory prediction for screening length and oscillation frequency,
respectively. Blue dots show screening constant extracted from envelope fits of charge-charge
correlation functions (method shown in Fig. 3.2a). Red triangles show screening constant
while green square show oscillation frequency extracted from small-k course of simulation
G̃q(k) (see Simulation section). The length scales from G̃q(k) fits consistently overestimate
length scale in small κDσ regime, and underestimate it in the large κDσ regime.

nature of the lattice, length scales extracted from such a fitting procedure can be error prone

particularly in regimes where the length scale is comparable with the lattice size. We instead

extract the oscillation frequency by first computing the Fourier charge-charge correlations

from simulation. We use the standard definition [34]

G̃q(k) =
1

N

∑
j, l

qjql exp

(
−2πi

L
k ·
(
rj − rl

))
, (3.11)

from which G̃q(k) can be easily computed; see Fig. 3.2b for some G̃q(k) from simulation

with ρQ/J = 0.5/σ2. We then fit the large wavelength or small-k region of G̃q(k) using the
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Figure 3.5: Screening constant, κsσ, displays non-monotonic trend as κDσ is increased,
shown here for ρQ/J = 1/σ2. Solid black line is continuum mean field theory prediction.
Blue dots are screening constants extracted from the envelope of charge-charge correlation
functions, Gq(r), in simulations. The effect of the negative T̄FIc is visible in the slight
positive curvature of the mean field prediction when κDσ > κ̄∗Dσ. Near, but slightly above

the regime change, simulation κsσ ∼ (κDσ)−1.

inverse quartic form of the mean field expression in Eq. 3.3. As mentioned in the Model

section, G̃q(k) contains information about the length scales of the system, which can be

extracted from the pole,

k0 = ω + iκs, (3.12)

with κs and ω the length scales appearing in the charge-charge correlation function, Eq. 3.4.

Thus, fitting the small-k form to simulation G̃q(k) allows us to extract estimates of both κs

and ω from simulation.

The values of κsσ extracted from simulation using the large wavelength G̃q(k) fits exhibit

the same qualitative trends as those extracted from charge-charge correlation fits, see Fig. 3.4.

Importantly, the scaling of the two regimes, κsσ ∼ κDσ when κDσ � κ∗Dσ and κsσ ∼
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(κDσ)−1 just above the regime changeover, is the same between the two methods. When

κDσ is small, the G̃q(k) fits underpredict the screening constant. Relative to mean field, the

G̃q(k) fits also predict κ∗Dσ > κ̄∗Dσ. In the large κDσ regime, the G̃q(k) fits overpredict the

screening constant. The G̃q(k) fit inverse length scales are essentially shifted to the right

with respect to mean field and charge-charge correlation fits, but capture the qualitative

features.

Given the qualitative agreement between values of κsσ estimated from direct simulations

and from the fitting method described above, it is reasonable to speculate that the oscillation

frequencies extracted via G̃q(k) small-k fits will capture the qualitative trends exhibited by

the simulations. We compare the oscillation frequencies and screening constants extracted

from the Fourier correlation function fits, to mean field predictions in Fig. 3.4. The oscillation

frequency grows rapidly as κDσ increases past κ∗Dσ, but saturates towards an asymptotic

value as κDσ continues to increase, in line with the continuum mean field theory (ω̄ given

in Eq. 3.9).

We also simulate a range of ratios ρQ/J to extend our results beyond the continuum mean

field theory which is only strictly valid for small ρQ/J [42]. The short ranged ferromagnetic

Ising interaction, described by J , causes spins which are alike to cluster, leading to a length

scale, lc, which acts as a molecular length scale aside from the lattice length, σ. As recognized

some time ago in the context of RPM models [77, 35], it is the frustration between a short-

range length scale and the Coulomb length scale that results in non-DH behavior. While

RPM models have a fixed molecular length scale, the hard sphere size, the FI model can

potentially afford tunability of the molecular length scale, as J can be varied.

In Fig. 3.6 we plot the screening constant trending, extracted from large wavelength fits

of the simulation G̃q(k), for different ρQ/J ratios. We see that κ∗Dσ changes as ρQ/J is

varied, but the same qualitative trends hold for all ρQ/J examined here. Namely, there are

two regimes, one governed by the Debye constant, and the other governed by the inverse Ising
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Figure 3.6: The screening constant, κsσ, against κDσ for different ρQ/J ratios. We extract
κsσ here using the small-k course of G̃q(k) discussed in the Simulation section. Increasing
ρQ/J shifts κ∗Dσ to the right, also increasing the maximum screening constant, κ∗sσ. Near

but slightly above the regime change, simulation κsσ ∼ (κDσ)−1 for each ρQ/J (the dotted

lines show the scaling
√
T/J ∼ (κDσ)−1 for each parameter set).

correlation length analogous to the mean field prediction in Eq. 3.5, 3.8. The scaling of κsσ

in the two regimes remains unchanged — κsσ ∼ κDσ when κD � κ∗D and κsσ ∼ (κDσ)−1

just after the regime changeover —despite changing the ratio ρQ/J . Thus, the two distinct

regimes are robust even beyond the validity of the continuum mean field theory; within

the range of parameters studied here, increasing ρQ/J monotonically increases κ∗Dσ. The

division between the DH and overscreened regimes can thus be controlled by tuning J , as

predicted in Eq. 3.7 and borne out in simulations in Fig. 3.6.

Finally, we consider the limiting case that exists when varying ρQ/J , namely when

J → 0. That limit allows us to make some connection with previous work on the lattice

RPM [78, 79] whose short-range interaction is purely repulsive. We find that two regimes

occur in simulation for J = 0, just as in the J > 0 case, see Fig. 3.7. Note that the simple FI
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continuum mean field theory fails in this regime, predicting that the J = 0 case is identical

to the Debye-Hückel theory for all values of κDσ. The simulation lattice plays a role directly

analogous to the RPM hard sphere interaction, providing a sense of finite size to each ion.

3.4 Conclusions

The recent experimental discovery of universal scaling of the screening length, κsσ ∼ (κDσ)−2,

in concentrated electrolytes and ionic liquids has rekindled theoretical interest in the large

κD or strong Coulomb coupling regime [1]. Past theoretical work based on the RPM of

electrolytes using closure relations such as hypernetted chain approximations [35, 53] and a

generalization of the Debye charging process [55], as well as a molecular dynamics simulation

study of molten NaCl salt [59], suggest κsσ ∼ (κDσ)−1/2 for κD just above the peak κ∗D.

Considering additional effects such as the formation of Bjerrum ions pairs may modify the

scaling to κsσ ∼ (κDσ)−1 within a Poisson-Boltzmann framework [80].

In this work, we focus on the properties of the FI model well above its critical point,

and find that it captures important features required to model the correlations of bulk

ionic fluids. From simulations of the FI model, we find that κsσ ∼ (κDσ)−1 in the strong

Coulomb coupling regime. The introduction of short length scale fluctuations affects only

the temperature at which the crossover from the DH to the oscillatory regime occurs and

leaves the scaling behavior unchanged. This scaling is different from the universal scaling

experimentally observed in Ref. [1]. However, it may be possible to alter the scaling of the

FI model in the overscreened regime via simple modifications such as the introduction of

defects in the lattice [66], or creating asymmetry in the charge carriers, either in magnitude

or shape [81]. These possibilities will be explored in future work. We also note that while

the experimental universal scaling [1] and much previous theoretical work [35, 82, 53] place

an emphasis on the ion size as a determining factor for the strong coupling regime, the ion

size is not as simple to interpret in the FI model and appears to some extent through the
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Figure 3.7: Screening constant, κsσ, displays non-monotonic trend as κDσ (Eq. 3.5) is
increased, shown here for ρQ = 1/a2 and J = 0. Dashed black line is the Debye constant,
κDσ, which is also the prediction of the continuum mean field theory presented in the Model
section when J = 0. Blue dots are screening constants extracted from the envelope of
simulation charge-charge correlation functions, Gq(r). Note that the domain and range of
this plot differ from previous κsσ vs κDσ plots in this paper.

Ising coupling J .

In conclusion, the FI model complements other theoretical techniques commonly used to

describe ionic fluids, such as mean-field Poisson-Boltzmann theories [29], integral equations

[35], field theories [83] or their hybrids [84], and molecular simulations [59], and has the merit

of reproducing the essential features of ionic correlations relatively simply. The FI model

may be generalized to model surfaces and solvents in ionic fluids — which are systems of

great current experimental interest [1, 25]. Overall, the Coulomb-frustrated Ising model is

an attractive framework for the study of long-range non-DH correlations in ionic fluids due

to its simplicity and its capture of broad qualitative trends.
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3.5 Appendix: Simulation Methods

The Coulomb interaction is implemented using the Ewald summation technique [85, 86].

The long-range part is precomputed at the start of a run, since the separation between all

lattice sites is fixed [75]. We use periodic boundary conditions in all three dimensions. Our

simulation box has sides of length L = 32a with a = 1 the lattice cell length. The lattice is

initialized with an equal number of positive and negative charges. We use cluster moves which

preserve the net charge of the system (
∑N
j qj = 0) and greatly reduce the autocorrelation

times at low temperatures, improving efficiency [76]. Monte Carlo move random numbers

are generated using the PCG pseudo-random number generator [87]. Lattice trajectories

were visualized using VMD [88].

We use fundamental requirements for statistical mechanical electrostatic systems as a

check for our simulations. The Stillinger-Lovett second moment (SL2) condition constrains

the long-length scale fluctuations of a Coulomb system [77]. A formulation of the SL2

condition is that the charge structure factor (or equivalently, the Fourier charge correlation

function) tends to zero as k2 for small k [35]. We have demonstrated that our simulation

produces the required trend, see in particular Fig. 3.2b. In addition, the high-T energy

scaling of a Coulomb system must reduce to that of the Debye-Hückel theory: U ∼ −T−1/2

[33]. We confirm that condition as well.

Cluster moves are implemented as described in Ref. [76]. Briefly, two random sites and an

axis of rotation are selected. One of the sites is the initial site of a cluster. The other random

site is the center of a rotation of π about the rotation axis; the initial site of the second cluster

is the result of the rotation of the first initial cluster site by π about this axis. If the two initial

cluster sites are oppositely charged, the clusters are grown; otherwise the move is rejected.

Each cluster is composed entirely of one type of spin. The two clusters are grown according

to the rotational symmetry (ie. the rotation of π about the selected axis) as follows. The

nearest neighbors of the first cluster are each proposed to be added in turn. To add a site,

57



it must have the same spin as it’s cluster and it’s symmetry pair (ie. rotated counterpart

adjacent to the other cluster) must also have the same spin as it’s cluster. When this occurs,

they are both added to their respective clusters with probability 1− exp
(
−4βeffJ

)
, where

βeff is a parameter tuned to maximize the cluster move acceptance ratio (here set to 1/5 as

suggested by Grousson and Viot [76]). The nearest neighbors of these newly added sites are

added to the set of spins that must be checked for possible inclusion in the clusters. Only one

attempt is made to add a given spin. Once no more spins can be added to the clusters, the

move is accepted with probability exp
(
−β∆ECoul +

(
βeff − β

)
∆EIsing

)
, where ∆ECoul

is the contribution from the Coulomb interaction to the change in energy of the proposed

move and ∆EIsing is the Ising contribution.

3.6 Appendix: Detailed Derivation of Mean Field Theory from a

Lattice

In this section, we walk through the derivation of the continuum theory we use here (and

in future chapters) from a variational mean field theory of a lattice. First, we consider a

mean field theory for a pairwise ± spin model with the goal of specializing to the Coulomb-

frustrated Ising (or FI) model. We show that the mean field theory for the FI model maps

essentially directly onto the Landau-Ginzburg φ2 theory with Coulomb interaction. Finally,

we extract the response function from the LG free energy, and compare it to a response

function found previously showing that the LG Fourier charge correlation function can be

considered a small-k expansion of the more complicated charge correlation function, and

make the mapping concrete.

The work shown here is important because it establishes that the Coulomb-frustrated

Ising model in the mean field approximation contains the same small-k information as other

theories of dense ionic fluids.

This derivation draws from the texts by Safran [38] and Pathria [89].
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3.6.1 Variational mean field theory for pairwise ± spin model

Consider a pairwise ± spin lattice model, ie. one with a Hamiltonian

H = −
∑
ij

siHijsj , (3.13)

with si = ±1. As an example, if Hij has only nearest neighbor (NN) interactions, such a

Hamiltonian would represent the Ising model. We can make a variational approximation to

a pairwise ± spin model using a mean field, trial Hamiltonian

H0 = −
∑
i

sihi (3.14)

with hi the mean field felt by spin si. Using the variational theorem, we can upper bound

an uncorrelated estimate for the free energy of the full Hamiltonian,

Fuc ∼ 〈H (Γ) + T log p (Γ)〉Γ , (3.15)

by

F
(0)
uc ∼ 〈H (Γ0) + T log p0 (Γ0)〉Γ0

. (3.16)

Here, Γ is a vector-valued configuration variable (ie. it is equivalent to a specification of the

set si of spins that make up a particular state), F is a free energy, T is the temperature-related

energy (kB set to 1 for convenience), p ∝ exp (−H (Γ) /T ), and 〈f(Γ)〉Γ =
∑

Γ p(Γ)f(Γ).

Then to find the desired upper bound, F
(0)
uc , we must find the average energy and entropy

with respect to p0.

First, consider the probability of observing a state {si}. Using the trial Hamiltonian
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Eq. 3.14:

p0 {si} ∝ exp (−H0/T )

=
∏
i

p0 (si) ,
(3.17)

with p0 (si) ≡ exp (sihi/T ) the probability a single spin, i is in state si. Then using the trial

Hamiltonian in which spins do not interact with each other, but instead with a mean field,

leads to a set of independent spins.

Next, consider the partition function. Since the spins are independent, it follows that

the partition function of the system, Z0, is a product of the individual spin partitions, zi.

Writing down the partition of a spin:

zi =
∑
si=±1

exp (sihi/T ) , (3.18)

which implies that

Z0 =
∏
i

(exp (hi/T ) + exp (−hi/T )) . (3.19)

It will be convenient to work mostly with individual spin probabilities/partition functions.

Now, consider the average value of spin i, φi ≡ 〈si〉 :

φi =
∑
si=±1

si p (si)

=
exp (hi/T )− exp (−hi/T )

exp (hi/T ) + exp (−hi/T )
.

(3.20)

Finally we are ready to compute the quantities we want to calculate: 〈H〉p0 and 〈T log p0〉p0
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:

〈H〉p0 =
∑

si, sj=±1

p0 (si) p0
(
sj
)−∑

ij

siHijsj


= −

∑
ij

Hij
∑

si, sj=±1

p0 (si) sip0
(
sj
)
sj

= −
∑
ij

φiHijφj ,

(3.21)

and, noting that 1 + φi = 2
zi

exp(hi/T ) and 1− φi = 2
zi

exp(−hi/T ),

〈T log p0〉p0 = T
∑
si=±1

∑
i

p0 (si) log p0 (si)

= T
∑
i

exp (hi/T )

zi
log

(
exp (hi/T )

zi

)
+

exp (−hi/T )

zi
log

(
exp (−hi/T )

zi

)
= −NT log 2 +

T

2

∑
i

(1 + φi) log (1 + φi) + (1− φi) log (1− φi) .

(3.22)

We can simplify the sum over logs by expanding about φi → 0, which holds for T > Tc. In

this limit,

〈T log p0〉p0 → −NT log 2 +
T

2

∑
i

φ2
i +O

(
φ4
i

)
. (3.23)

Combining,

F
(0)
uc = 〈H〉p0 + 〈T log p0〉p0

= −
∑
ij

φiHijφj +
T

2

∑
i

φ2
i −NT log 2.

(3.24)
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3.6.2 Specializing to the Coulomb-frustrated Ising model

In the last section, we considered some general coupling between spins, Hij in our full

Hamiltonian. Now, we specialize to the Coulomb-frustrated Ising case, where

Hij =
1

2

(
Jij − ρQV (rij)

)
, (3.25)

with

Jij =


J if i, j NNs

0 else,

(3.26)

V (r) the with electrostatic potential given by solution to the Poisson equation, and rij

Euclidean distance between spins i 6= j. Here, we use the relaxed definition for the potential

due to a point charge, giving the well-known Coulomb form V (r) = 1/r. Strictly speaking,

the potential on a lattice of charges is not given by the Coulomb form [42], and our choice

to use this approximate form leads to some unphysical effects, such as a critical temperature

that can become negative for certain parameter settings (see discussion in the main text).

We choose to use this approximate form because it allows us to make a connection with

continuum field theories for the charge density, as we will see at the end of this derivation.

With the useful separation φiφj = 1
2

[
φ2
i + φ2

j −
(
φi − φj

)2]
, we can rewrite

F
(0)
uc = 〈H〉p0 + 〈T log p0〉p0

= −
∑
ij

φi

(
Jij
2
− ρQ

2

1

rij

)
φj +

T

2

∑
i

φ2
i −NT log 2

=
ρQ

2

∑
ij

φiφj
rij

+
1

4

∑
ij

Jij
(
φi − φj

)2 − 1

4

∑
ij

Jij

(
φ2
i + φ2

j

)
+
T

2

∑
i

φ2
i −NT log 2.

(3.27)

We will now simplify term-by-term. Consider the third term. Since the summation runs
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over i and j, φi = φj : the index variable is unimportant. Further, considering a particular

i, we can write
∑
j Jij = 2dJ because there are 2d nearest neighbors for each i, and Jij is

zero for non-nearest neighbors. So

∑
ij

Jij

(
φ2
i + φ2

j

)
= 4dJ

∑
i

φ2
i . (3.28)

Next, consider the second term. The squared difference is symmetric, and has similar form

to a squared gradient. Due to the symmetry and summation over i and j, each gradient

between i and j is considered twice; once again we can replace the sum over j of Jij with

2dJ . Finally, to convert to a square gradient from a squared difference, we need to preserve

units, and so we need to multiply by a length scale squared. The relevant length scale is the

lattice cell length, σ, since we are considering nearest neighbors. Then

∑
ij

Jij
(
φi − φj

)2
=
∑
i

(2dJ)
[
2σ2 (∇φi)2

]
= 4σ2dJ

∑
i

(∇φi)2 .

(3.29)

As in the case of the Poisson potential, it is possible to treat this “square-gradient”-like term

in a manner that is closer to the underlying lattice nature of the problem. Again, we make

our choice here so that we can make a connection with continuum field theories.

Making substitutions and regrouping, we find that

F
(0)
uc =

∑
i

[(
T

2
− dJ

)
φ2
i + σ2dJ (∇φi)2

]
+
ρQ

2

∑
ij

[
φiφj
rij

]
−NT log 2. (3.30)

If Q = 0, ie. in the limit of an Ising model, our mean-field prediction for the critical

temperature is Tc = 2dJ . For d = 2, the mean-field prediction of T 2D.MF
c ∼ 4 is almost twice

the actual value of T 2D
c ∼ 2.3 [90], but for d = 3, the mean-field prediction of T 3D.MF

c ∼ 6

is relatively closer to the numerical value of T 3D
c ∼ 4.5 [91]. Mean-field theory is known
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to become more exact as the dimensionality increases, and so it is comforting that our

mean-field model has the expected trend.

The form of the free energy is very similar to a Landau-Ginzburg form, with a φ2 term,

and a square-gradient term. We can make this analogy explicit by defining a mapping. For

a Landau-Ginzburg free energy of the form

F [φ] =
σ3

2

∫
d3r a [φ (r)]2 +m [∇φ (r)]2 +

σ3

2
ρQ

∫
d3r

∫
d3r′ φ (r)V

(∣∣r− r′
∣∣)φ (r′) .

(3.31)

where V (r) is the electrostatic potential given by solution of the Poisson equation (for point

charges, V (r) = 1/r) and we map from the mean-field Coulomb-frustrated Ising model as

follows:

a↔ T − 2dJ = T − TMF
c

m↔ c22dJ = c2TMF
c

Q↔ Q.

(3.32)

In Fourier space, the free energy of the Landau-Ginzburg model is

F [φ] =
σ3

2

∫
d3k

∣∣∣φ̃(k)
∣∣∣2 [a+mk2 + ρQṼ (k)

]
, (3.33)

with corresponding response function

χ̃(k) =
1

mσ3

k2

k4 + a/mk2 + 4πρQ/m
. (3.34)

This derivation shows that the mean field theory of a lattice model, and specifically the

charge-frustrated Ising model, can be mapped to a Landau-Ginzburg-like continuum field

theory in the charge density. In fact, the continuum form is of the same form as a k4

expansion of the theory of Adar et al. [57] discussed in Section 2.6. We make use of this
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continuum form in the main text of this chapter. We also use the intuition developed from

this model throughout the next two chapters. Thus, the mean field theory of the charge-

frustrated Ising model presented here serves as a minimal model that we use as a foundation

which we can relate our other results to. As we will see in Chapters 4 and 5, the mean

field theory is surprisingly effective. However, we also show that it fails to explain some

features of our colleagues’ experiments, and our simulations are able to extend the range of

our explanatory capability.

65



CHAPTER 4

STABLE COLLOIDS IN MOLTEN INORGANIC SALTS

The following chapter reproduces material previously published in Ref. [25]. That work

was in collaboration with Hao Zhang, Kinjal Dasbiswas, Gang Han, Byeongdu Lee, Suriya-

narayanan Vaikuntanathan, and Dmitri V. Talapin. I was the third author of the paper, and

contributed to the simulation and theory portions of the work. Readers are referred to the

original publication for more of the experimental details, which are only summarized here.

In the past chapter, we developed the charge-frustrated Ising model, and showed using

mean field theory and simulations that two regimes emerge. At high temperature, or low

κDσ, the theory and simulations reduce to the DH theory, as expected. However, when

κDσ & 1, a regime change occurs and correlations between ions become oscillatory. In

addition, the length scale of the decay now increases with κDσ. The mean field theory

was shown to agree with simulation for a specific range of parameters, but also with other

theories [35, 52, 55, 56, 57], some qualitatively and some nearly quantitatively. However, one

feature we did not address was the inclusion of solutes within ionic fluids. Though the linear

response theory developed in Chapter 2 leads us to believe that charge-charge correlations

should be intrinsically tied to solute-liquid correlations, we need to put this belief to the

test within the context of high ionic strength fluids, which we do within this chapter in the

context of nanocrystal colloids within molten salts.

4.1 Experimental Summary

In this work, we report the observation of colloidal systems of solute particles dispersed in

molten inorganic salts. Various solutes – nanocrystals (NCs) of metals, semiconductors, rare

earth, and magnetic materials – were synthesized by my experimentalist colleagues using

organic surfactants (e.g., n-alkyl carboxylic acids) that stabilize colloidal solutions in non-
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polar solvents. These organic surfactants are not compatible with molten inorganic salts,

but they can be exchanged with inorganic surface ligands [92], which is expected to reduce

the free energy of the interface between the NC surface and inorganic solvent. Moreover,

surfactant-free (or “bare”) colloidal NCs can be prepared using ligand-stripping agents [93].

These recent developments in NC surface chemistry have been utilized to integrate NCs in

inorganic hosts by co-precipitation from suitable solvents [94, 95].

It appears that traditional stabilization mechanisms cannot explain the colloidal stability

of NCs in a molten inorganic salt. The refractive index of NCs is generally higher than that

of the molten salt (e.g., n ∼ 2.5 for CdSe vs n ∼ 1.4 for molten KCl) and van der Waals

attraction cannot be eliminated because of index matching. A very high charge density in a

molten salt is expected to result in strong electrostatic screening, making Coulomb repulsive

forces short-ranged and weak compared to van der Waals attraction [96]. The absence of

brush-like molecules tethered to the NC surface also rules out the possibility of classical

steric colloidal stabilization [29].

To understand the origin of colloidal stabilization in molten inorganic salts, we carried

out a series of experimental and computational studies. My experimentalist colleagues found

that only certain NC-MS combinations were colloidally stable. In particular, they found that

systems were stable when there was strong binding between the molten salt and nanocrystal

surface. This led us to postulate that, due to the high concentration of ions, ion layers might

be formed at the surface of the nanocrystals, as shown in the cartoon in Fig. 4.1a.

4.2 Summary of Simulation and Theory

To test our hypothesis regarding the origin of colloidal stability, we modelled the inter-

face between the CdSe crystal and molten KCl using molecular dynamics (MD) simulations

(Fig. 4.1b and Section 4.4). Solvent structuring takes place near every solid-liquid interface,

regardless of the interaction between the surface and solvent [29]; it typically creates de-
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caying solvent density oscillations that propagate for several molecular diameters [97]. Ion

layering near interfaces has been reported in molten salts and organic ILs [98], and it was

also observed in our simulations. Near the interface with a chemically inert hard wall, both

K+ and Cl– ions showed identical oscillatory density profiles that decayed to the bulk den-

sity within less than 0.5 nm (Fig. 4.1c, top panel). In contrast, cadmium-terminated [001]

and [111] CdSe surface, which are the typical facets of zinc-blende CdSe NCs [99], induced

a qualitatively different behavior in the molten salt. In agreement with previous experimen-

tal data [100], CdSe NCs showed a strong affinity toward Cl– ions that formed a dense,

nearly epitaxial surface layer (see Section 4.4). These co-ions templated strong ordering

in the molten salt, with alternating K+ and Cl– shells extended into the liquid phase for

about 2 nm (Fig. 4.1b and bottom panel in Fig. 4.1c). The ion shells created charge density

oscillations around each NC, which were robust with respect to temperature above Tm.

When two NCs approach each other to a distance smaller than twice the length of the

structured ion layers, the interference between charge density oscillations contributes to at-

traction or repulsion of NC cores. To evaluate the free energy of this interaction, we carried

out umbrella sampling simulations (see Section 4.4). For two parallel surfaces, the surface-

templated charge density oscillations can interfere constructively or destructively, depending

on the distance, which leads to an exponentially decaying oscillatory interaction energy

(Fig. 4.1d). However, any tilt between two surfaces causes suppression of the oscillatory

component and development of a repulsive force between approaching surfaces due to frus-

tration of the molten salt layers (Fig. 4.1e). Using a linear combination of differently tilted

surfaces, the interaction energy between two 10 nm spheroid NCs can be modeled (Fig. 4.1f

and Section 4.4). This repulsive-oscillatory force of ion structuring by far exceeds the van

der Waals and double layer electrostatic contributions at all interparticle separations, except

at very short sub-nm distances (Fig. 4.1f), and is responsible for the colloidal stability.

To rationalize MD simulations, we applied a phenomenological Landau-Ginzburg theory

68



Figure 4.1: The origin of colloidal stability in molten salts. (a) The relationship between
chemical affinity of the NC surface to species in molten salt (represented by blue and green
spheres), and colloidal stability. Corresponding examples of stable and unstable colloidal
dispersions are shown in the photographs. (b) A snapshot of MD simulation of the interface
between the Cd-terminated [001] surface of zinc-blende CdSe crystal and molten KCl. (c)
Density profiles of K+ and Cl– ions showing the structuring of molten salt near the interface
with a chemically inert wall (top) and with Cd-terminated [001] (bottom) surface of zinc-
blende CdSe crystal. The crystal surface templates strong ordering of the molten salt. (d,e)
Simulated free energy of ion structuring in molten KCl (blue dots) between two [001] CdSe
surfaces (d) parallel to each other and (e) tilted by 20◦. Black lines are the predictions
from continuum Landau-Ginzburg theory. (f) Simulation free energy of the interactions
between two spheroid NCs (diameter 10 nm), including the total energy and the contributions
from the ion layer structuring, the van der Waals (vdW), and the electrostatic double layer
interactions, respectively. Details of the protocol to estimate the free energy of interacting
spheroids is discussed in the text.
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to solvation in molten salts. Using the Derjaguin approximation, the interaction energy of

ion structuring between spherical particles can be derived as having two parts, one a damped

oscillatory function and one a repulsive exponential decay (see Eq. 4.18). Our theory shows

very good agreement with MD simulations, as seen in Fig. 4.1d,e, and further supports

the important role of the ion structuring near curved surfaces for colloidal stabilization of

NCs in molten salts. In the absence of surface-templated charge density oscillations, only

attractive force between NCs was predicted by the theoretical analysis and also observed

in simulations, in agreement with the experimental data. One can see the similarity of the

oscillatory-repulsive forces between NCs in molten salts and the hydration repulsion between

polar surfaces in water [101, 102], although the physical origin of these forces appears to be

different.

We now describe the continuum theory we used to study the interaction between nanocrys-

tal colloids within molten salts.

4.3 Continuum theory for interacting surfaces in molten salts

In this section, we develop a phenomenological theory similar to the ones developed in

Sections 2.6 and 3.2 to explain the colloidal stability observed in suspensions of various

nanocrystals in inorganic molten salts. We use this phenomenological theory to predict and

rationalize the layering seen in simulations purely in terms of physical interactions ubiquitous

in both inorganic molten salts and organic room-temperature ionic liquids: short-range steric

(present in all liquids [34]) and long-range electrostatic (Coulomb) interactions between

ions. Such a phenomenological theory has been used successfully to describe experimentally

observed capacitive transitions at electrode-room temperature ionic liquid interfaces [61, 65].

In the traditional DLVO theory of interactions between colloidal particles, as discussed in

Section 2.3, double layer or electrostatic forces lead to a repulsion between charged surfaces

in a solution [103]. Due to the high density of ions in a molten salt, the electrostatic forces
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between charged surfaces are expected to be screened out over very short distances [65].

The colloidal particles are therefore predicted by the DLVO theory to aggregate because of

attractive van der Waals or solute-mediated interactions.

Here we show that colloidal stabilization in molten salts can be explained by interac-

tions not accounted within DLVO theory. We consider a different scenario here that surface-

induced ordering or layering in the molten salt [104, 105] contributes to the colloidal stability,

as observed both in experiments and simulations. Such layering is expected to be pronounced

and extend a long distance into the bulk if the salt is reasonably close to its crystallization

temperature. In the following, we present our calculation for the free energy of interaction

between two planar, infinite surfaces in an inorganic molten salt from a continuum Landau-

Ginzburg theory perspective, taking into account both the short-range steric and long-range

electrostatic interactions [106]. We first derive the oscillatory interaction energy between

a pair of symmetric, parallel surfaces. We then show that a relative tilt between the two

surfaces can lead to a repulsive free energy profile superimposed on the oscillatory profile.

Such a tilt is important to account for faceting, curvature, and also surface roughness on real

nanocrystal (NC) surfaces. The effects of curvature, faceting and roughness are expected

to frustrate the layering and attenuate the oscillations in free energy. But it still maintains

large repulsive barriers between two approaching NCs, as shown in our simulations. Finally,

the force between two plane surfaces can be generalized to that between two finite, spherical

colloidal particles by using the Derjaguin approximation, previously discussed in Section 2.3.

This theory is general for investigating the interactions between particles in a solvent com-

posed solely of ions, including colloidal NCs in inorganic molten salts. As an example, we

choose CdSe NCs in molten KCl and analyze their interactions using this theory.
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4.3.1 Approximate continuum Hamiltonian for charge density ordering

The layering of ions normal to a flat nanocrystal (NC) surface (with normal along the

z-axis) can be described using a Landau-Ginzburg model for the free energy above the

critical temperature. The bulk free energy of the system including the effect of long range

interactions in the solvent is [22], from considerations in Section 2.6 and Chapter 3,

F [φ(z)] =
σ3

2A

∫
dz a [φ (z)]2 +m [∇φ (z)]2 +

σ3

2A
ρQ

∫
dz

∫
dz′ φ (z)V

(∣∣z − z′∣∣)φ (z′)
=

1

2A

∫
dk
∣∣∣φ̃(k)

∣∣∣2mσ3

k2 + a/m+

(
(κ∗)2

k

)2
 ,

(4.1)

where σ is a coarse-graining length, a is dependent on temperature, m governs the elasticity

which comes from particle interactions, ρ is the density of ions in the fluid, Q describes the

electrostatic interaction strength, and

κ∗ ≡
(

4πρQ

m

)1/4

, (4.2)

is the fluids preferred wavenumber for which the free energy is minimized and also the inverse

of the shortest length scale the system can support (also the decay length scale at the change

between DH-like and oscillatory regimes) – see discussion in the context of the FI model in

Section 3.2. The response function is written

χ̃(k) =
1

mσ

k2

k4 + a/mk2 + (κ∗)4
. (4.3)

In Eq. 4.1, φ(z) is the local charge density of the solvent expressed as the difference in

number density of cations and anions normalized by the total number density of salt. The

free energy F [φ(z)] in Eq. 4.1 is the effective one-dimensional Hamiltonian for describing the
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molten salt. We ignore the (φ(z))4 and higher order terms because the molten salt (KCl) is

above its bulk melting temperature and is a disordered liquid far from the colloidal interface.

The effect of long-range interactions is simplified in Fourier space, as shown in the second

line in Eq. 4.1. Following a similar procedure as in the derivation of the DLVO interaction

energy in Section 2.3, the free energy of the fluid between the plates is related to the amount

which the confinement interrupts the screening of each plates surface charge [45, 46]:

Fp(D)
D�1/κ
−−−−−→ m

σ3

2A

∫ ∞
D/2

dz
a

m
[φ (z)]2 + [∇φ (z)]2

+
ρQ

m

∫ ∞
D/2

∫ ∞
D/2

dzdz′ φ (z)V
(∣∣z − z′∣∣)φ (z′) , (4.4)

with κ the decay length of the correlations, to be defined momentarily (in the DH regime,

κ→ κD).

The wavelength of ordering can be a few angstroms which is about one ionic layer thick

as expected. The solvent can thus exhibit layering up to a long length scale as a result of

the competition between steric and Coulomb interactions. Indeed, estimates of the screening

length obtained by analyzing the poles of the structure factor are much larger than the Debye

length (even in the Gaussian approximation used here).

Such an effective Hamiltonian has been used to describe a variety of materials whose

ordering is governed by a competition between short- and long-range interactions [18] – for

example, magnetic films, diblock copolymers, Langmuir monolayers, and more recently, ionic

liquids [61, 65, 107] – and the corresponding phase diagram has been extensively studied and

characterized [106, 20]. This is richer than that for a simple liquid: as the temperature is

lowered towards the bulk ordering temperature, the liquid can go from being disordered to an

intermediate regime characterized by local structural order before long-range crystalline order

is established. In Eq. 4.1, we consider the molten salt to be above its ordering temperature,

so that while the bulk is disordered, a nanocrystal surface can template local order in its
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vicinity [18, 98].

The linear response of the fluid in the bulk results in a fourth-order linear differential

equation that can be solved analytically (especially easily in Fourier space), or which follows

from linear response Eq. 2.20,

h̃ = χ̃−1φ̃. (4.5)

With the appropriate surface boundary condition (determined by the chemical interaction

of the surface with ions) and charge neutrality conditions, one can solve the charge density

profile, φ(z). A solution for φ(z) induced by one surface that satisfies a simple boundary

condition that puts a energetic potential on the fluid at z = 0, and global charge neutrality,

is given by Eq. 9.15, and reproduced here:

φ(z) = φ0 exp (−κz) sin

(
ωz +

θ

2

)
, (4.6)

where θ = − arctan

(√
(κDlc/2)2 − 1

)
is the phase, which ensures charge neutrality in the

bulk of the solvent and

φ0 ≡ −
A

4l2cκ
∗
√

1− (2lcκD)−2
, (4.7)

with A = βε as in the DLVO case in Section 2.3. This form of the charge density arises since

the NC (e.g., Cd-terminated CdSe NCs) surface has a strong preference for one type of ions

(i.e. Cl– ) in the melt, which in turn leads to successive alternating layers of cations and

anions (with wavenumber ω) decaying with distance from the surface (with a range of κ).

4.3.2 Charge density order and free energy in two-surface geometry

Having solved the charge density ordering near one surface, we now solve for the correspond-

ing order between two surfaces. This can be used to calculate a free energy profile for the

interaction between two NC surfaces as a function of their distance of separation. Colloidal
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stability may result from large barriers (compared to kBT ) in this free energy landscape.

Parallel surfaces

The linear response equation, Eq. 4.5, corresponds to the Hamiltonian that describes the

competition between short- and long-range interactions (Eq. 4.1). It is analytically solvable

and can be generalized easily to the case where there are two symmetric surfaces in parallel

(located at z = 0 and z = D) that induce order. The solution can be approximated as the

the superposition of two one-plate solutions, similar to the DLVO case in Eq. 2.29, leading

to

φ2(z) = φ (z) + φ (−z +D) . (4.8)

In the limit of large separation, D � 1/κ, the profile up to the midplane can be approximated

as the single plate profile,

φ2(z)
D�1/κ
−−−−−→ φ(z), z < D/2. (4.9)

As in the DLVO discussion in Section 2.3, the free energy due to the confinement of the

fluid between two charged plates is related to the surface charge of each plate which remains

unscreened [45, 46], or equivalently, the integral of the one-plate charge density beyond the

midplane, Eq. 4.4. We use this simple expression to calculate the fluid-plate electrostatic

free energy by inserting the expression in Eq. 4.8 into Eq. 4.4, finding

Fp(D) ∼
aφ2

0σ

κ
(κ∗)2 m

a
exp (−κD) sin (ωD) , (4.10)

and for convenience later, defining

F0 ≡
aφ2

0σ

κ
(κ∗)2 m

a
. (4.11)
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Tilted surfaces

Our simulations show that there is an exponentially decaying repulsive component over and

above the oscillatory features in the free energy, particularly apparent in the 20◦ tilted

plates (Fig. 4.1e and 4.5b). This is related to the large energy cost of removing the last few

remaining ionic layers as the two NC surfaces approach very close to each other [29]. Here, we

present a qualitative way of understanding this repulsion in terms of the phenomenological

theory.

An obvious effect of tilting one surface with respect to the other is that the separation

between the two plates is different at different positions, leading to an averaging out of the

oscillatory interactions to some extent. By integrating Eq. 4.10 over the range of separation

Dmax−Dmin = lp sin θt, where lp is the linear size of the plate (corresponding to the size of

the NC facet) and θt is the angle of tilt, one can obtain the factor by which the oscillations

are attenuated. For large facet areas and/or large angles of tilt, the oscillations are averaged

out to a large extent and an approximate form for the attenuation factor is η ∼ ωlp sin θt,

whereas for small plates tilted at small angles, i.e. in the limit κlp sin θt � 1, the attenuation

factor scales as η ∼ 1+κlp sin θt. We indeed see an attenuation in the free energy oscillations

in the simulation results for plates tilted at larger angles (Fig. 4.5b). However, for NCs of

small size, such as used in this experiment, and strong surface-induced layering (i.e., high

energy peaks), the attenuation is not strong enough to completely wash out these oscillatory

features.

When one of the order-inducing surfaces is tilted with respect to the other, the order is

induced along different axes (see simulation snapshot in Fig. 4.1e). This can be analyzed as

an effective one-dimensional problem by considering variations of the charge density along

the z-axis, assuming the two surfaces induce different effective layering wavenumbers, ωl and

ωr, respectively, where ωr = ωl cos θt. The density profile can be approximately calculated
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by superposing the one-surface solutions from the left and the right,

φt = φ0

[
exp (−κz) sin

(
ωlz +

θ

2

)
+ exp (κz) sin

(
ωr (−z +D) +

θ

2

)]
,

(4.12)

where the asymmetry between the surfaces leads to different preferred wavelength of order

induced by left and right surfaces. We expect this Ansatz to be more accurate when the

plate separation, D, is significantly larger than the decay length, 1/κ. The tilt free energy

can be computed numerically using the profile in Eq. 4.12 and the approximate free energy

in Eq. 4.4, or can be represented with a scaling argument as we discuss now.

The relative tilt between the ordering from the right and left surfaces (see snapshot in

Fig. 4.1e) is reminiscent of a grain boundary in a crystalline ordered phase. The creation of

a grain boundary, which is a defect in the ordering, causes a free energy penalty. The energy

cost increases with the tilt angle [37] as has been shown in the context of defects in lamellar

ordering in block copolymers [108]. The two surfaces would therefore tend to move away

from each other to reduce this free energy cost (which scales as square of the amplitude of

order parameter), therefore resulting in an effective repulsion. We expect this repulsive free

energy cost to scale as

Ft(D, θt) ∼ F0
κ

κ∗
exp (−κD) θ2

t . (4.13)

To summarize, the interaction between two parallel flat surfaces is a decaying and oscil-

latory function of their distance of separation, D, being minimized at the special separations

where commensurate layering can occur, i.e. an integer number of ionic layers can fit in

between the two plates. On top of this, there are repulsive interactions between two tilted

plates which is an effective function of the angle of tilt, θt. The total free energy of interac-

tion between two mutually tilted flat surfaces, for a small angle of tilt, can then be captured
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by the following semi-empirical expression where the effect of the tilt is taken into account

F (D, θt) = Fp(D) + Ft(D, θ)

∼ F0 exp (−κD)
[
sin (ωD) +

κ

κ∗
θ2
t

]
.

(4.14)

Curved surfaces

Now, we use the interactions between parallel and tilted plates to approximate the interac-

tion between spherical colloids using an adaptation of the Derjaguin approximation. The

Derjaguin approximation, discussed in Section 2.3, is appropriate for the typical solvent

structuring interactions between colloids. However, DLVO forces, dilute electrostatic or

van der Waals, depend only on the distance of separation of the surfaces and their area.

To apply the Derjaguin approximation to oscillatory and directed interactions, such as the

colloid-induced layering observed in MD simulation, we have to modify this procedure to

effectively account for the tilt. First, we compute the contribution to the free energy as if

the layers templated by each point of the colloid surfaces were parallel, and then find the

contribution due to the relative tilting of the surfaces at each point.

The parallel contribution is easily computed using the integral derived in Eq. 2.34 and

the expression for parallel plate free energy Eq. 4.10 (scaled by the parallel plate area, Apl):

Fp.sphere(D) = πR

∫ ∞
D

dz Fp(z)/Apl

=
πRF0

Apl
√
κ2 + ω2

exp (−κD) sin (ωD) ,
(4.15)

where
√
κ2 + ω2 = κ∗ as seen in Appendix Eq. 9.27.

To compute the tilt contribution, we integrate over the same circular surface elements as

in the standard Derjaguin approximation, and using the first line in the geometric relation
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Eq. 2.33, we can write a relation between the separation and the tilt angle θt

z(θt)
θt→0−−−→ D +Rθ2

t , (4.16)

for small angles. The total interaction energy is then found by performing the integral of

Ft introduced in Eq. 4.13 (scaled by the parallel plate area, Apl) over the surface elements

described in Eq. 2.34,

Ft.sphere(D) = πR

∫ ∞
D

dz Ft(z)/Apl

∼ πF0

Aplκκ
∗ exp (−κD) .

(4.17)

The contribution to the free energy of interaction from the tilt scales with a lower power

in R than the interaction between parallel surfaces. The physical meaning of this is ap-

parent when we write the total effective energy of interaction between spherical surfaces by

combining Eq. 4.15 and 4.17, leading to

Fsphere(D) ∼ πRF0

Aplκ
∗ exp (−κD)

[
sin (ωD) +

1

κR

]
. (4.18)

Eq. 4.18 shows that the oscillatory (and symmetric) interactions between parallel sur-

faces becomes more pronounced as R is increased, i.e. the surfaces approach the flat limit,

while the repulsive component increases when R is small, as now the surface elements sample

greater tilt angles. This R-dependence is as per our physical expectations and is illustrated

in Fig. 4.1f and 4.6. We also compare the typical DLVO forces, discussed in Section 2.3

with the layering interactions for a typical spherical particle (4 nm diameter) used in exper-

iment in Fig. 4.1f. The dependence of the colloidal interactions on the size of the colloidal

nanoparticles suggested in Eq. 4.18 would be interesting to probe in subsequent experiments.

Particularly, kinetic trapping by large oscillatory barriers may become increasingly relevant
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for larger colloidal particles where the repulsive component becomes relatively smaller.

In the next section, we describe the molecular dynamics simulations we performed to

study the interactions between nanocrystals in molten salts.

4.4 Molecular dynamics (MD) simulations of NCs in molten KCl

4.4.1 Simulations of ion layering on a CdSe NC

In addition to the analysis with continuum Landau-Ginzburg theory, we ran MD simulations

of CdSe NCs in KCl solvent [109]. The details for MD simulations are included in the Ap-

pendix. Along the same lines as the theory discussed above, we start our MD simulations

by considering ion layering around a single CdSe NC surface. Then we simulate the interac-

tions between two parallel surfaces in molten salts, especially along the axis normal to NC

surface. We generalize such interactions to two tilted surfaces and finally quasi-spherical

NCs. For comparison, we also run simulations of structureless, or chemically inert, walls

in molten KCl. There have been several reports on the influence of molecular layering on

forces between colloids and nanoparticles using continuum theory and MD simulations in

room temperature ionic liquids [110]. However, to the best of our knowledge, there has been

no quantitative theoretical studies for the forces between colloids induced by an inorganic

molten salt.

In general, solid surfaces are expected to induce liquid density oscillations [34, 97]. In

densely charged liquids, solid surfaces with surface charge are known to induce even longer

range charge density oscillations [65, 98]. As expected, we observed robust layering of the K+

and Cl ions near the surfaces of the nanoparticles (normal to the NC surface: Fig. 4.2). In

addition to ion layering in the direction normal to the interface, significant in-plane ordering

of K+ and Cl– ions was observed near the crystal surface because of a good match between

the in-plane periodicity of the CdSe surface and the diameters of ions in the molten salt. The
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Figure 4.2: The chemical affinity between Cd-terminated [001] CdSe surface and Cl– induces
charge density oscillations in molten KCl. (Left) A snapshot of layering of ions between
two [001] surfaces of CdSe nanocubes (2.45× 1.85× 1.85 nm3). (Right) Simulated charge
density as a function of the distance between two surfaces; note the Cd-bound C peaks
have been omitted from the charge density profile. Color code in the snapshot: Orange: Cd,
yellow: Se, green: K+, and blue: Cl– . Here, the density profiles templated by the nanocubes
constructively interfere, and so this configuration is at a free energy trough. Note that the
bound layer of Cl– ions are not shown in the charge density profile.

in-plane correlation functions describe the statistically averaged, in-plane distances between

particles and their neighbors. As in-plane ordering increases, the peaks will become sharper

and will decay less with distance. For example, a system with no in-plane ordering will

display a constant value for all separations, while a solid will have sharp peaks that extend

as far as desired without decay.

We quantified the net interaction between two rectangular cuboid zinc-blende CdSe NCs

(hereon referred to as “nanocubes”) of dimension 2.45 × 1.85 × 1.85 nm3 in solution along

the axis normal to NC surface using standard enhanced sampling techniques (specifically

umbrella sampling) [111, 112, 86]. In addition, we fit the charge density profile shown in

Fig. 4.2 with the Landau-Ginzburg theory. In detail, we extracted the length scales, the

correlation length (1/κ) and the oscillation frequency (ω) from the density profile in Fig. 4.2

by fitting the expression for the charge density with Eq. 4.6. Using κ and ω, we were able

to find correspondence between simulation and theory using a two parameter fit of Eq. 4.14
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Figure 4.3: Simulated free energies of layering between two surfaces of CdSe nanocubes,
[001]-[001] (blue) and [001]-[111] (red), in molten KCl. The indistinguishable free energies
of interactions between different facets indicate the ion layering is the dominant factor.

for the amplitude, F0, and f(θ) ∼ cθ2, with c a fitting parameter.

We focused on interactions between Cd-terminated CdSe [001] facets, but also collected

data for the interaction of a [001] Cd-terminated facet interacting with a [111] Cd-terminated

facet; the nanocube interactions were indistinguishable (Fig. 4.3). We conclude that the main

effect here is solvent layering along the surface normal, and that in-plane ordering effects due

to surface atom arrangement is less important. For simplicity, we fixed the orientation of

the nanocubes, and only allowed motion along one axis, which is normal to the NC surface.

Parallel nanocubes induced charge density oscillations in the KCl solvent which interfered

at the midplane when the nanocubes came close together (Fig. 4.4). The interference leads to

a decaying, oscillatory energy of interaction between nanocubes as a function of separation,

D (Fig. 4.5A). If we envision two nanocubes coming together along a shared surface normal,

there will be certain distances where the charge density templated by each cube align and
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Figure 4.4: An example of parallel CdSe nanocubes in molten KCl and the corresponding
charge density profile. (Left) A snapshot of layering of ions between two [001] surfaces of
CdSe nanocubes (2.45×1.85×1.85 nm3). (Right) Simulated charge density as a function of
the distance between two surfaces; note the Cd-bound Cl– peaks have been omitted from the
charge density profile. Color code in the snapshot: Orange: Cd, yellow: Se, green: K+, and
blue: Cl– . Here, the density profiles templated by the nanocubes constructively interfere,
and so this configuration is at a free energy trough. Note that the bound layer of Cl– ions
are not shown in the charge density profile.

reinforce (Figs. 4.5C,D). There will also be certain distances where the charge densities

will be perfectly anti-aligned, leading to destructive interference of the charge density wave

(Figs. 4.5E,F). Intuitively, destructive interference is energetically costly because planes of

like charges interact without screening. As seen in Figs. 4.5E,F, the charge density at the

midplane is near zero, indicating an equal mixture of charges, leading to a strong, repulsive

interaction between the planes of like charge adjacent to the midplane. As will be discussed

later, the high energy penalty for destructive interference leads to a unique phenomenology.

A decaying oscillatory interaction energy (Fig. 4.5A) will preclude nanocube flocculation

since particles cannot assemble closer than a certain separation where the free energy max-

imum (peak) overpowers the thermal energy. However, such an energy profile also presents

the possibility that nanocubes might become kinetically trapped (also known as reversible

coagulation [29]) in local minima (e.g., point c in Fig. 4.5A). On the other hand, our sim-

ulations show that the colloidal stability can be increased by introducing slight tilting. In
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Figure 4.5: Simulated free energies of layering (blue dots with error range) for two parallel
(A) and tilted (B) nanocubes (2.45× 1.85× 1.85nm3), and fit (solid lines) by the Landau-
Ginzburg theory with Coulomb interactions (Eq. 4.18). (CF) Simulated charge densities
between two parallel nanocubes located at troughs (C,D) and peaks (E,F) as marked in
(A); the Cd-bound Cl– peaks have been omitted from the charge density profiles. Note that
constructively interfering charge density profiles are low energy configurations and destruc-
tively interfering ones are high energy configurations.
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detail, we introduced frustration into the system by varying the nanocube surface normals.

A relative tilt between nanocubes washes out the peaks and troughs of the interaction energy

to some extent. Two nanocubes with a relative tilt can be thought of as a linear combination

of many parallel plates at slightly different separations, since the effect of tilt is to introduce

a range of separations between the plates (see Fig. S2A). So the energy of interaction of

two tilted plates is just the average of the energies of many parallel plates at slightly dif-

ferent separations. A larger relative tilt introduces a larger range of separations over which

the average must be taken, decreasing the oscillatory character of the interaction compared

to that of the parallel case. Thus, a purely repulsive interaction without much oscillatory

character can be observed (Fig. 4.5B). Note there is a significant difference in energy scales

shown in Figs. 4.5A,B due to the diminishing oscillatory contribution. Allowing rotations

of the nanocubes in simulations would lead to additional repulsive free energy beneficial for

colloidal stability. This and other possibilities will be explored in future work.

Real NCs typically have spheroidal shape truncated with various low-index planes. Thus,

we use a linear combination of differently tilted nanocubes as a first approximation to these

spheroid NC facets in the spirit of the Derjaguin approximation. There are a few important

points to address with regards to the approximation made here. In a real spheroidal NC,

different facets have different surface compositions. In our simulations, we only consider

Cd-terminated facets. As mentioned above, interactions between [001] and [111] facets are

equivalent to those between [001] and [001] facets (Fig. 4.3). Thus, we simplified the interac-

tions between various Cd-terminated facets by replacing them with [001]-[001] interactions.

In addition, we will be combining parallel nanocube and small tilt angle nanocube interac-

tions only, which means we can treat these as interactions between flat plates, ignoring all

nanocube faces except for the closest ones. Informed by the geometry of a faceted spheroidal

zinc-blende CdSe NC, we show quasi-spheres formed from one parallel plate and four, six, or

eight tilted plates (e.g., there are four [111]-like and four [011]-like facets for each [001]-like
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Figure 4.6: Simulated free energy of layering between two quasi-spherical CdSe NCs (10 nm
in diameter) in molten KCl. The quasi-spheres are formed by one parallel facet and 4, 6, or
8 tilted facets. Inset shows an example of quasi-spherical particle. The highlighted facets
have four and six adjacent tilted facets contributing to the repulsive force between NCs.

facet), as shown in Fig.4.6. For CdSe NCs with a diameter of 10 nm (close to the upper limit

of NC size used in our experiments), we find that the troughs are significantly reduced, while

the peaks remain high compared to thermal energy (10-20 kBT ) as the two NCs begin to ap-

proach within around 1 nm between the closest facets. Such high energy peaks are estimated

to be capable to provide long term colloidal stability. These simulation results support our

experimentally observed colloidal stability of NCs with finite curvature in molten inorganic

salts.

In all the above simulations, we chose a temperature of 1250 K because it is well above

the hysteresis loop for our molten salt model and still near the melting point of KCl (∼ 1000

K). Note that our molten salt model does not account for polarization fluctuations. However,

we expect the above results such as the layering effect and the charge density profile should

be general for a wide range of temperatures. In Fig. 4.7, we extract the density profiles near
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Figure 4.7: Temperature dependence of charge ordering induced by CdSe nanocubes (2.45×
1.85× 1.85 nm3) in molten KCl. Note the first Cd-bound Cl– peak has been omitted from
each charge density profile.

CdSe nanocubes at 1150 and 1200 K and measured the correlation lengths and peak heights.

Our theory predicts that the amplitude of the energy of interaction should go as the square

of the density at the NCs. Therefore these density profiles allow us to predict how to scale

the free energy profiles for systems at these temperatures (Table S1).

4.4.2 Simulations of ion layering on a structureless (or chemically inert)

wall

For comparison, we also ran MD simulations on a system with structureless surfaces with-

out chemical affinity to either ion in the molten KCl. The system has LennardJones (LJ)

interactions between the solvent and the structureless NC surfaces, and unmodified LJ and

Coulomb interactions between the ions. We find that the ion density profiles templated by

the structureless NC surfaces are similar to the density profiles of hard sphere templated by
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a hard wall. The interaction between the structureless NC surfaces is also very similar to

the hard sphere-hard wall system. Without surface charge and/or different chemical affinity

for different solvent, oscillatory ion layering observed earlier in the simulation study does

not occur. Since much of solvation theory is based on the hard sphere-hard wall system and

our control system behaves analogously to the hard sphere-hard wall system, we will briefly

compare the phenomenology of the molten salt-NC system (with chemical affinity) and the

hard sphere-hard wall system.

In the absence of surface charge or chemical affinity, ion layers still form, but not the

alternating oscillations that occur in the presence of surface charge or chemical affinity. Near

a hard wall, the density profile of a hard sphere fluid oscillates about the bulk density. The

correlation length of these oscillations is related to the radius of the spheres. The solvent-

mediated (hard sphere-mediated) interaction between two hard walls is oscillatory, but the

source of the oscillations is related to the packing of the hard spheres between the walls

(Fig. 4.8). The important factor for the hard sphere-hard wall interaction energy is the

space available to the hard spheres to move, i.e., the entropy of the hard spheres. The peaks

and troughs of this energy profile are based on the density of hard spheres at the midplane

between the two hard walls. When the midplane density is less than the bulk density, the

hard wall energy is near a trough; when the midplane density is above bulk, the energy is

near a peak. Beyond this oscillating regime (< 0.5 nm), the forces of interaction are usually

attractive as demonstrated by our simulations and phenomenological theory (Fig. 4.8). These

simulations on a structureless wall are in accordance with our experimental observations of

destabilization of NCs in molten salts when there is no chemical affinity between NCs and

the ions. We note that Landau-Ginzburg theory predicts repulsion between walls which each

bind to a different component of the solvent, but we expect such interactions to be much

weaker than the energy scales associated with frustration in inorganic molten salts [113].

Returning to the NC in molten salt system, troughs and peaks correspond to, as dis-
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Figure 4.8: Structureless walls are purely attractive. (Left) Density profiles of K+ (green)
and Cl– (blue) around a hard wall. (Right) Simulated free energy between two structureless
walls in molten KCl and the fit by Landau-Ginzburg theory. Structureless walls do not induce
charge oscillations. As a result, the free energy is as predicted by the Landau-Ginzburg theory
for solutes which perturb a field in a symmetric manner.

cussed above, coherence and decoherence of the templated molten salt charge density. NC

interaction energy is at a minimum when the charge density at the midplane is a peak or a

trough. Peak energies occur when there is suboptimal shielding between like-charged solvent

layers, i.e., when the charge density at the midplane is zero. The dominant energy contri-

bution determines how the energy depends on the density profiles, and in molten salts, the

Coulomb interaction between templated solvent layers is by far the most dominant.

4.4.3 Details of molecular dynamics (MD) simulation

We used the LAMMPS MD package [109] to simulate a molten salt-nanoparticle model

system, specifically KCl salt with a CdSe NC. We adapted the models developed by Aguado

et al. for molten salts [114] and by Grunwald et al. for solid CdSe [115]. These two models

have different forms for the steric and dispersion interactions, with the molten salt using

a Born-Mayer-Huggins form and the CdSe crystal using a 6-12 Lennard-Jones form [116].

We chose to use the Born-Mayer-Huggins potential, and adapted parameter values from
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Grunwald’s force field by finding σ and ε for the Cd and Se ions. The parameters used for

our model are displayed in Table S2. We simulated an NVT ensemble, with temperature at

1250 K (the melting point for our model is around 1000 K) and with KCl density of 20.681

nm3. We chose box sizes so that neighboring images of the CdSe nanocubes would have

negligible interactions: the axis of allowed motion was 21.2 nm in length while the other

two axes were 8.9 nm in length. Since the cubes were of size 2.45 × 1.85 × 1.85 nm3 and

the largest sampled separation was ∼ 3 nm, this box size leaves more than 16 nm between

nearest nanocube images along the axis of motion. We used the LAMMPS-implemented

particle-particle particle-mesh solver to implement the long-range Coulomb interactions. We

implemented enhanced sampling using the PLUMED code plugin [111]. As a control, we

simulated a structureless wall, with no charge and which interacted with solvent only through

the 6-8 Lennard-Jones potential. The structureless walls displayed a standard solvent density

profile. But long range charge-density oscillations were not observed as there was no surface

charge to prefer one ion over the other. Two structureless walls assembled as predicted by

the Landau-Ginzburg theory for solutes with a symmetric effect on the order parameter.
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CHAPTER 5

NANOCRYSTALS IN MOLTEN SALTS AND IONIC LIQUIDS:

EXPERIMENTAL OBSERVATION OF IONIC

CORRELATIONS EXTENDING BEYOND THE DEBYE

LENGTH

This chapter reproduces material previously published in Ref. [26]. That work was in col-

laboration with Vladislav Kamysbayev, Vishwas Srivastava, Olaf J. Borkiewicz, Hao Zhang,

Jan Ilavsky, Byeongdu Lee, Karena W. Chapman, Suriyanarayanan Vaikuntanathan, and

Dmitri V. Talapin. I shared first authorship with V. Kamysbayev and V. Srivastava, and

contributed to the simulation and theory portions of the work. Readers are referred to the

original publication for more of the experimental details, which are only summarized here.

In the last chapter, we were motivated by the findings of our experimentalist colleagues,

who showed that nanocrystal colloids were colloidally stable within molten salts and ionic

liquids. We extended the theory developed in the context of the charge-frustrated Ising

model in Chapter 3 as a basis to describe molten salts. With the help of our linear response

toolkit, we adapted ideas from the DLVO theory and Derjaguin approximation described in

Section 2.1 to apply the frustrated Ising mean field theory to rationalize our MD simulation

results, and ultimately, the observed experimental colloidal stability. Specifically, we showed

that the surfaces of model nanocrystal colloids interact with high ionic strength fluids and

induce charge oscillations within those fluids. The solvent-mediated interaction between

plate-like colloids is then oscillatory as well since the order templated by each colloid can

interfere constructively or destructively depending on the separation between plates. We

further showed that spherical colloids have an additional repulsive term which occurs due to

the relative angle between surface normals as the surface of each colloid is traversed. When

the plane waves templated in different surface normal directions intersect, no constructive
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interference is possible, leading to a net repulsion. Although our simulation and theory

coincided well with experimental observations, we lacked direct evidence of the templating

of charge oscillations within experiment. Our experimental colleagues moved to remedy

that fact, and this chapter begins by describing their observations using X-ray scattering

on nanocrystal colloids within molten salts and ionic liquids. In this chapter, we report the

results of our MD and theory work on BMIMCl and NaSCN solvent systems, respectively.

The nature of the interface between the solute and the solvent in a colloidal solution

has attracted attention for a long time. For example, the surface of colloidal nanocrystals

(NCs) is specially designed to impart colloidal stability in a variety of polar and non-polar

solvents. This work focuses on a special type of colloids where the solvent is a molten inor-

ganic salt or organic ionic liquid. The stability of such colloids is difficult to rationalize using

traditional theories because solvents with high density of mobile charges efficiently screen

the electrostatic double layer repulsion, and purely ionic molten salts represent an extreme

case where the Debye length is only ∼ 1 Å. We present a detailed investigation of NC dis-

persions in molten salts and ionic liquids using small-angle X-ray scattering (SAXS), atomic

pair distribution function (PDF) analysis and molecular dynamics (MD) simulations. My

colleagues’ SAXS analysis confirms that a wide variety of NCs (Pt, CdSe/CdS, InP, InAs,

ZrO2) can be uniformly dispersed in molten salts like AlCl3/NaCl/KCl (AlCl3/AlCl4
– )

and NaSCN/KSCN, and ionic liquids like 1-butyl-3-methylimidazolium halides (BMIM+X– ,

where X=Cl, Br, I). By using a combination of PDF analysis and molecular modeling, we

demonstrate that the NC surface induces a solvent restructuring with electrostatic correla-

tions extending an order of magnitude beyond the Debye screening length. These strong

oscillatory ion-ion correlations, which are not accounted for by the traditional mechanisms

of steric and electrostatic stabilization of colloids, enable colloidal stabilization in highly

ionized media.
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5.1 Experimental Summary

My experimentalist colleagues characterized the interaction between various ionic fluid-

nanocrystal pairs. The interested reader is referred to the original publication for details

of their work, [26] which we will only summarize briefly here. They first demonstrated, using

transmission electron microscopy before and after, that the morphology of the NCs dispersed

and recovered from molten salts was unchanged. Next, they used SAXS to determine which

nanocrystal-solvent systems led to dispersed colloids, as compared to worm-like chains or

aggregations. In particular, the NaSCN/KSCN and BMIM+X– solvent systems were found

to stabilize a variety of NCs. Then, they characterized the chemical nature of the ion-NC

interaction using FTIR measurements to characterize the tight binding between NC surfaces

and ions in SCN– salt systems, and XPS measurements to extract similar binding informa-

tion in BMIM+X– solvent systems. After these characterizations, they proceeded to explore

the restructuring of the ionic fluids due to the NCs.

Any changes in local structure of molten inorganic salts and ILs induced by the addition

of NC solute can be probed directly with the atomic Pair Distribution Function (PDF)

analysis of the high energy X-ray scattering patterns. PDFs are extracted by the Fourier

transform of the total X-ray scattering data and can give information about both short-range

order (arrangement of atoms within molecules, sharp peaks at 1–5 Å) and intermediate-range

order (intermolecular arrangements, broad oscillations at 3–20 Å) in a liquid sample. This

ability to probe intermediate-range order can give us valuable information about the solvent

layer immediately next to the NC surface. My experimentalist colleagues chose to study the

NaSCN/KSCN molten salt system and the BMIM+X– ionic liquid system.

To characterize the strucuring of ions near a NC, three measurements are required, one

of a dry NC powder, one of the bulk solvent, and one of the NC-salt dispersion. The bulk

measurement, referred to as the PDF, and shown in Fig. 5.1b, serves as a comparison. In

addition, both the bulk and dry powder measurements are subtracted from the NC-salt
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Figure 5.1: (a) Experimental PDF of Pt NCs in the dry powder, d-PDF of Pt NCs capped
with S2– ligands in NaSCN/KSCN after the bulk liquid PDF subtraction, and dd-PDF after
additional subtraction of the NC contribution. (b) dd-PDF of Pt NCs and NaSCN/KSCN
melt curves fitted using exponentially damped sinusoidal functions (black curves). (c) Log
plot of the curves from (b) showing the difference in the decay lengths between the restruc-
tured and bulk melts. (d) Comparison of the dd-PDFs corresponding to the restructured
NaSCN/KSCN melt around ZrO2 and InP NCs (black curves represent fits).
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measurement to give a final result, the “double-differential PDF” or dd-PDF (see Fig. 5.1a).

The dd-PDF was observed to have a different structure for a variety of ionic fluid-NC systems.

For example, Fig. 5.1b and c compare the PDF of NaSCN/KSCN to the dd-PDF of Pt NCs

in NaSCN/KSCN on a linear and log scale, respectively. The phase and decay length are

affected, but the wavelength is not, as the wavelength is closely related to the physical size

of the ion pair [82]. The difference in the decay length can be most clearly visualized from a

logarithmic plot of the absolute value of G(r) (Fig. 5.1c). The decay length increases from

3.9 Å in the bulk to 7.5 Å near the Pt NC surface suggesting that the ion-ion correlations

near the Pt surface are more persistent than the ion-ion correlations in the bulk melt. The

change in decay length cannot be understood in terms of linear response theories discussed

in Section 2.2, which predicts that the decay length is determined entirely by the fluid. The

same restructuring was observed for other NCs in NaSCN/KSCN, such as ZrO2 and InP, see

Fig. 5.1d, indicating the phenomenon is somewhat general. In a control experiment using

toluene and InP NCs did not show restructuring.

A similar set of experiments and analysis was performed for Pt NCs dispersed in BMIM+Cl–

IL. As in case of NaSCN/KSCN melt, the decay length increases from 3.6 Å for the bulk IL

to 4.4 Å for the restructured IL. In addition to Pt NCs, CdSe and InP NCs in BMIM+Cl–

IL exhibited dd-PDFs with the distinct phase and increased decay length. These results are

summarized in Fig. 5.2a,b and Fig. 5.3.

In a control experiment, my experimentalist colleagues dispersed organic ligand free CdSe

NCs in the Lewis neutral BMIM+BF4
– IL and performed analogous PDF analysis. The RSF

had no signs of the solvent restructuring. Thus, the experiments in the present study led us

to similar expectations as in the previous chapter. Specifically, the universal restructuring

observed in the Lewis basic NaSCN/KSCN melt and BMIM+Cl– IL around various classes

of NCs and its absence in Lewis neutral BMIM+BF4
– IL supports the hypothesis of Zhang

et al. [25], discussed in Chapter 4, that ionic ordering near the NC interface is responsible
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for the colloidal stability. SCN– and Cl– ions are able to act as X-type ligands which bind

to electron-deficient metal-rich facets of NCs and hence form a dense surface-bound layer

(Fig. 5.2d). BF4
– ions, on the other hand, cannot act as X-type ligands and hence do not

form a surface-bound layer.

5.1.1 Questions

We were left with a few questions to address through simulation. First, though the exper-

imental dd-PDF gives us a clear picture about how the solvent structuring changes near a

NC relative to the bulk, we lack a molecular-scale picture of the details. We cannot resolve

the orientation of molecular ions such as BMIM+, and we also cannot separate the dd-PDF

into components. Thus, a molecular simulation will give us more insight on a smaller scale.

Second, we were very intrigued about the alteration of the decay length from the bulk to the

NC surface-induced correlations. As repeatedly discussed throughout this text, the linear

response relation leads us to expect a single decay length for both types of correlations (in

particular see discussion in Section 2.2). We were intrigued to probe the molecular-scale

origin of this effect, if possible. And finally, we were interested to extend our previous sim-

ulations from the extremely simple molten salt KCl, in which ions are both spherical, to a

more complicated solvent system, such as BMIM+Cl– or a SCN– salt.

5.2 Simulation on CdSe nanocrystal colloids in BMIM+Cl–

solvent system

MD simulations of NCs in BMIM+Cl– capture the restructuring of the IL by a NC surface.

Our choice to study BMIM+Cl– was in part motivated by the availability of the force fields

for this IL, which enabled direct comparison of experimental data and MD models [117].

Unfortunately, we could not find the force fields and parameterizations for NaSCN and
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Figure 5.2: (a,b) Comparison of the dd-PDFs corresponding to the restructured BMIM+Cl–

melt around Pt, CdSe, and InP NCs with PDF of bulk BMIM+Cl– (black curves represent
the fits). (c) Comparison of the experimental PDFs with the simulated radial PDF of
the bulk BMIM+Cl– IL, and contributions from the inter-ion structures of BMIM+-Cl– ,
BMIM+-BMIM+, and Cl– -Cl– . (d) MD snapshot (zoomed in view) of BMIM+Cl– in the
vicinity of the cubic zinc blende InP NC (In atoms are blue circles; P atoms are red circles).
(e) Comparison of the experimental PDFs with the simulated linear PDFs in the direction of
the In-rich NC surface normal, and contributions from surface-ion correlations of In-BMIM+,
In-Cl– .
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KSCN molten salts which precluded modeling of that solvent system.

We studied a system consisting of bulk BMIM+Cl– as well as systems including NCs

(model details are provided below in Section 5.4.1). Fig. 5.2c shows the simulated PDF of

the bulk BMIM+Cl– which is well matched to the experimental data obtained from the total

X-ray scattering from pure BMIM+Cl– , which lends us confidence that the model might be

extended to capture colloid-IL interactions. The simulation partial PDFs suggest that the

intermolecular intermediate range order is dominated by BMIM+-Cl– correlations (orange

curve).

We added cubic CdSe and InP nanocrystals to BMIM+Cl– solvent to gain molecular-

scale insight into the solute-solvent correlations. The solvent structure in the local region

near the InP NC was significantly restructured, see snapshot in Fig. 5.2d, but the structuring

decayed after a few molecular layers (CdSe NCs induced similar restructuring). We extracted

the density profiles of BMIM+Cl– normal to the In-terminated (001) surface of a cubic zinc-

blende InP NC. We plot these profiles, which vary with distance (z) from the NC surface

along with experimental dd-PDF, which varies with the radial distance (r) (Fig. 5.2e).

Interestingly, these measurements show a good match, in particular, between the small-

distance large peak (at ∼ 1.7 Å), identified from the simulations as the Cl– ion adhered

to the In surface, and the second broad peak (∼ 4–6 Å) identified as a layer of BMIM+

ions immediately following the first Cl– layer. A snapshot of the simulation (Fig. 5.2d)

clearly suggests that Cl– ions form a dense layer on the In-terminated surface followed by

a dense layer of BMIM+ ions before the density correlations slowly decay to become bulk-

like. Recent elemental analysis of InP NCs with Rutherford backscattering spectroscopy and

XPS suggest that InP NCs are almost 100% In terminated [118]. Hence, there should be

little contribution from the correlations between negatively-charged (P terminated) facets

and BMIM+ ions to the total pair distribution function. And with the surprising extent to

which the In-IL normal-direction solvent profile correlates with the experimental dd-PDF,
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Figure 5.3: Log plot comparing the decay of correlations in BMIM+Cl– bulk solvent and
BMIM+Cl– with Pt NCs. As in the SCN– salt system, the restructured decay length is
larger than bulk, but the increase is smaller here, compare with Fig. 5.1c.

it appears that the MD results are in agreement.

The features of this surface-induced density profile do not change significantly for the

different surfaces presented by InP and CdSe NCs in simulation, nor Pt NCs in experiment

(Fig. 5.2a). Thus, the restructuring of the BMIM+Cl– solvent by a metal rich surface is

robust to changes in the specific composition of the surface. Further, the restructuring

observed in the experiment appears to consist largely of the order induced normal to the

NC surface. However, the MD simulations were not able to reproduce the experimental

observation of an increase in decay length due to the NC templated order. Thus, while the

experimental results seem to violate the predictions of linear response theory, the MD results

do not.
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5.3 Conclusions

In conclusion, X-ray PDF analysis and MD simulations provide evidence for the formation

of a layered ionic solvation shell around NCs dispersed in molten inorganic salts and organic

ionic liquids. The solvation shell has enhanced ion-ion correlations compared to the bulk

liquid and extends far beyond the Debye screening length. The solvent restructuring happens

only for those molten salts where ions are able to function as surface-bound ligands for

dispersed NCs. Surprisingly, the decay length of ionic correlations is observed to increase

when measured for the NC-induced restructuring relative to unperturbed bulk structure.

This effect appears to be solvent dependent. The charge density wave consisting of the

restructured ions generates an oscillatory potential between NCs and hence constitutes a

fundamentally different mechanism of colloidal stabilization in addition to the standard

electrostatic and steric mechanisms. We believe that detailed understanding of the NC

solvation in highly ionized media of inorganic melts and ionic liquids is necessary for the

rational design of the colloidal systems in these unconventional media. The improved design

of the colloidal state in the high temperature inorganic molten salts can assist development

of a variety of hard-to-crystallize colloidal nanomaterials.

5.4 Methods

5.4.1 Molecular dynamics model

The BMIM+Cl– IL system was studied using the CLDP forcefield for ionic liquids, a timestep

of 0.5 fs and a short-ranged pairwise cutoff distance of 12 Å [117]. We ran molecular dynamics

simulations using the LAMMPS software package, [109] and visualized trajectories using the

VMD package [88]. The long-range part of the Coulomb interaction was implemented using

the particle-particle particle-mesh scheme, with relative error of 10−4.

Nanoparticles of CdSe, InP, and chemically inert types were implemented by setting short-
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range interactions equivalent to those of C2 carbons in the CLDP force field and including

appropriate partial charges [115, 119]. Mixing the partial charges from a crystal model

with the CLDP force field is necessarily approximate, but we expect it to be a reasonable

approximation and agreement between the simulation and experimental results bears out

that expectation. The interatomic distances in the nanoparticle solutes were rigidly fixed.

Our choice to model the short-range interaction in such an approximate way was informed

by simulation work on ionic liquid interactions with Au electrodes where the Au short-range

interactions were set as graphite carbons [120]. The most important factor by far appears to

be the charge of the surface, with the short-range interactions providing only a perturbation.

Since most of the ion specific interactions between the NC and the solvent is due to the

Coulomb interaction, setting the charge of the NC to zero is effectively the same as making

it chemically inert. And indeed, we observed that the structuring of the IL did not occur

when the Coulomb interaction between nanoparticle and solvent was set to zero. Though

not meant to be physically meaningful, this test confirms that the short-range interactions

and exclusion volume due to the nanoparticle is not responsible for the restructuring of the

IL.

Simulations were run at constant temperature and pressure with a temperature of 400 K

using the Nose-Hoover thermostat and a pressure of 1 bar using the Nose-Hoover barostat

with coupling parameters of 500 fs and 1000 fs respectively. In runs with nanoparticles, the

nanoparticles were allowed to rotate freely and were subject to a Langevin thermostatting

at 400 K. Bulk simulations consisted of 480 BMIM+ and 480 Cl– ions. Simulations with

nanoparticles consisted of two sets. In the first set, nanoparticles were cubic with sides

approximately 3 nm in length. The nanoparticles were cut such that for CdSe (InP) there

were three Cd (In) coated facets and three Se (P) coated facets. All facets were (100). For

these simulations, 3630 BMIM+ and 3630 Cl– ions were used, leading to a cubic periodic

box of roughly 10.5 nm in length. Larger simulations with 3 nm nanoparticles and box sizes
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up to 20 nm in length were used to confirm finite size effects were not an issue for the 10.5

nm box size.

Bulk simulations consisted of 480 BMIM+ and 480 Cl– ions. Simulations with nanoparti-

cles consisted of two sets. In the first set, nanoparticles were cubic with sides approximately

3 nm in length. The nanoparticles were cut such that for CdSe (InP) there were three Cd

(In) coated facets and three Se (P) coated facets. All facets were (100). For these simula-

tions, 3630 BMIM+ and 3630 Cl– ions were used, leading to a cubic periodic box of roughly

10.5 nm in length. Larger simulations with 3 nm nanoparticles and box sizes up to 20 nm

in length were used to confirm finite size effects were not an issue for the 10.5 nm box size.

5.4.2 Molecular dynamics analysis

Radial distribution functions for all ion pairs were extracted from simulation trajectories.

These were convoluted with appropriate atomic form factors for comparison with experi-

ment [121, 122, 123]. Atomic form factors were approximated using sums of four Gaussians,

which is a good approximation for small q [124]. The surface-induced correlations were also

measured by computing the probability of observing the various fluid atom types in front of

each surface of the nanoparticle as a function of the distance along surface normal. Similar

post-processing with atomic form factors was required for comparison with experiment.

For comparison with experimental restructured reduced structure factors, the radial dis-

tribution functions of ion pairs were also extracted from solvent systems including nanopar-

ticles. In these RSFs, crystal-crystal (Cd-Cd, Cd-Se, etc.) correlations were excluded from

sums over all particle pairs, as otherwise, the crystal-crystal contributions dominate the

less-ordered liquid-liquid and crystal-liquid contributions.

102



5.4.3 Estimating the interaction free energy between two small

nanoparticles

For small particles (ie. when the separation between particles is comparable to the size,

D ∼ R) the Derjaguin approximation, as applied in Section 4.3, is no longer applicable. To

attempt to remedy this defect, in this section, we will derive the solvent-induced free energy

of interaction between two NCs as a linear combination of tilted facets. Since the majority

of NCs are faceted, it is reasonable to approximate shape of Pt NCs by a spheroidal shape.

Here, we represent Pt NCs as a truncated icosidodecahedron [125]. The total interaction

free energy is then a linear combination of the interaction free energies between one pair of

parallel facets (decagons) and five pairs of tilted facets (squares and hexagons):

Ficos(D) = A10Fp(D) +
5a

2 sin(θ4)

∫ D+∆4

D
dz
[
Fp(z) + Ft (z, 2θ4)

]
+

5a

2 sin(θ6)

∫ D+∆6

D
dz
[
Fp(z) + Ft (z, 2θ6)

] w(z −D)

a
,

(5.1)

with Fp(z) defined in Eq. 4.10 and Ft(z, θ) defined in Eq. 4.13, A10 ≡ 5a2 cot(π/10)/2

the area of the decagon, a, defined by a3 ≡ 4
3πR

3 6
45+17

√
5

corresponds to the edge length

of a truncated icosidodecahedron, ∆4 ≡ 2a sin(θ4) the additional separation between two

squares at the angle θ4 ≡ π − arccos

(
−
√

10
(
5 +
√

5
)
/10

)
away from parallel, ∆6 ≡

4a cos(π/6) sin(θ6) the additional separation between two hexagons at the angle θ6 ≡ π −

arccos

(
−
√

15
(
5 + 2

√
5
)
/15

)
away from parallel [125], and

w(z) =


a+ z

tan(π/6)
sin(θ6)

z ≤ ∆6/2

a+ (∆6 − z)
tan(π/6)
sin(θ6)

z > ∆6/2.

(5.2)
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CHAPTER 6

EXTENDING THE CHARGE-FRUSTRATED ISING MODEL

The charge-frustrated Ising model that was the subject of Chapter 3 provides a concrete

basis for the study of coarse-grained ionic fluids in high and low temperature regimes. As

discussed, a continuum theory, equivalent in form to a theory accounting for the finite size of

charged hard spheres [57] truncated at k4, can be derived starting from a mean field theory of

the FI lattice model. However, a major limitation of the work presented in Chapter 3 was that

we only studied a highly symmetrical pure fluid without defects or the inclusion of colloids

of any kind. In particular, in our study we were unable to reproduce the experimentally

observed scaling of the screening constant, κsσ ∼ (κDσ)−2 [1], and we hypothesized that

some of the limitations just mentioned might be causing the mismatch between our results

and experiment. To remedy some of these limitations, we will discuss some unpublished

results from a follow up study in this chapter.

The results presented are along two different lines, as we were interested in generalizing

two different parts of the model. First, we discuss the inclusion of solutes within the FI model,

and show that the bulk screening length and solute-induced screening lengths are equivalent,

as predicted by linear response. Next, we discuss generalizations of a pure fluid without

solutes. The work discussed in Chapter 3 focuses on lattice sites with symmetric charge

and size, and also lacked defects. However, defects have been suggested to be important

for the realization of the experimental screening length scaling [1]. In the present chapter,

we discuss the breaking of the charge valence symmetry and the inclusion of defects within

the lattice. A simple extension of the mean field theory derived in Section 3.6 appears to

capture some important features of the scaling of the screening length within these systems,

though it runs into the same breakdown for large ρQ/J ratios as discussed in Chapter 3.

We are also interested in breaking the charge size symmetry, and this work is ongoing. In

the future, we also plan to measure the free energy of interaction between solute plates as a
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function of separation to confirm that linear response governs this length scale as well.

6.1 Solutes

We model solutes within the FI model as a set of sites, each with a defined valence and

position relative to a center of mass. We may optionally choose to allow the center of

mass to translate and rotate, which define new Monte Carlo moves in addition to the swap

or cluster move that advances the solvent through time. The details of such moves are

discussed in Section 6.4. Importantly, charge neutrality is always carefully preserved. In

the results that follow, the parameters are set to J = 1, Q = 0.5 and σ = 1, using the

notation from Chapter 3, and the Hamiltonian of the system can be found in Eq. 3.1. A set

of snapshots from simulations are shown in Fig. 6.1.

6.1.1 Charge density profiles

A charged, plate-like solute (20σ × 20σ × 4σ) is placed in long, rectangular simulation box

(50σ×50σ×54σ) and allowed to translate, but not rotate. The solute is composed of lattice

sites which are all charges/spins of valence +1. The system is enforced to be overall neutral,

so the solvent has a slight excess of −1 charges. We have also compared screening length

results from this system setup to one in which a counter-plate made of −1 charges is held as

far from the positive plate as possible to determine if the presence of extra negative charges

in the solvent has an effect on the results, but no difference is observed.

The charge density profiles are extracted from simulation and displayed in Fig. 6.2 and 6.3

for a variety of temperatures, corresponding to a variety of different κDσ values. Qualita-

tively, the profiles appear as expected, with low κDσ profiles decaying exponentially and high

κDσ profiles decaying with damped oscillations. Further, the trend of the screening length

with the Debye constant is qualitatively similar to that reported in Chapter 3, where the

screening length increases with temperature in the high T , low κDσ regime, while decreasing
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Figure 6.1: Snapshots from simulation for different temperatures with ρQ/J = 0.5/σ2. Plus
charges are brown, minus charges are blue. Simulations are visualized using Ovito [2]. a,
T=3. b, T=5. c, T=20. d, T=100.

106



0 2 4 6 8 10 12 14
Distance from plate surface, z

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

G
q
(z

)

T= 3

T= 5

T= 20

T= 100

Figure 6.2: Charge density profiles for plate of size 20σ× 20σ× 4σ in simulation box of size
50σ × 50σ × 54σ, linear scale. The value of Gq(z) at 0 is the positive surface charge of the
plate. The regime change can be seen qualitatively as the oscillations in T = 3 become less
pronounced in T = 5 before disappearing entirely by T = 20, which exhibits pure exponential
decay.
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Figure 6.3: Charge density profiles for plate of size 20σ× 20σ× 4σ in simulation box of size
50σ × 50σ × 54σ, log scale. The value of Gq(z) at 0 is the positive surface charge of the
plate. Here, the qualitative change in the behavior of the correlation length
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Figure 6.4: Screening constant measured from the single-plate charge density profiles as a
function of the Debye screening length.

with temperature in the low T , high κDσ regime.

It is simple to extract the decay length of the charge density profile, using methods

discussed in Chapter 3, and these inverse decay lengths are plotted against κDσ in Fig 6.4.

For comparison, the theory prediction for the bulk inverse screening length is also shown

on the same plot. As expected from linear response arguments, the charge density profile

induced by the solute decays with the same length scale as do bulk charge-charge correlations.

6.1.2 Potential of mean force between two solutes

The next step in the study of colloidal plates in the FI model is to measure the free energy of

interaction, or potential of mean force, between two plates, analogous to the measurements

performed for molecular dynamics in Chapter 4. However, for technical reasons, which we

now briefly discuss, this measurement is somewhat more complicated in a lattice model than

in a continuous space model such as MD.
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To accurately measure the PMF between two plates, both high and low free energy por-

tions of the PMF must be sampled. Harmonic constraints, or “umbrellas”, are frequently

used to bias the plate separation towards a specific value, and statistical methods are used

to de-bias a set of such constrained measurements after the simulations are completed [112].

For the solute model on a lattice introduced above, the smallest move that can be made in

a given direction is σ, which puts a practical upper limit on the spring constant that can be

used for harmonic constraints, since too large a spring constant will prohibit moves of σ on

reasonable simulation timescales. Contrast the lattice case with a simulation in continuous

space, like molecular dynamics, where arbitrarily small (within computer precision) varia-

tions in separation can occur, allowing for sampling over a range. An additional confounding

issue for large κDσ simulations is that a solute move will disrupt the local ordering of the

fluid. For moves that are constrained to be within a few σ, the smaller the distance of

the move, the larger the disruption (since the local ordering decays with distance). Thus,

when umbrella sampling is performed in the large κDσ regime, small moves are penalized

by local solvent ordering, while large moves are penalized by harmonic constraints, leading

to a situation where any solute moves become exceedingly unlikely. To make matters worse,

solute moves are already unlikely for plates which have area (20σ)2, since the disruption to

the fluid ordering scales with the area of the plate. It might be desirable to use plates with

smaller area, then, except that plates which are too small do not sufficiently perturb the

solvent.

6.2 Asymmetric Solvent and Defects

6.2.1 Asymmetric charge and spin

In our previous work, discussed in Chapter 3, we considered the FI lattice with symmetric

charges for various ρQ/J ratios. Here, we generalize that work by varying the valence of the
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Figure 6.5: Scaling of inverse screening length for different asymmetric charge systems. Each
system has ρQ/J = 0.5/σ2. (a),(b) ρ0 = 1, and the asymmetric plus charge has valence
q+ = 2.2 and q+ = 3, respectively. (c),(d) ρ0 = 0.75, and the asymmetric plus charge
has valence q+ = 2.2 and q+ = 3, respectively. In all four cases, the simple modification
to the mean field theory does a good job capturing the DH regime and gives a reasonable
prediction of the regime change point, κ∗D. For large κDσ, the scaling κs ∼ 1/lc shown as the
dotted line captures the scaling close to the regime change, but does poorly as κD continues
to be increased. As discussed in Chapter 3, the critical temperature becomes unphysically
negative when ρQ/J becomes too large, and that may explain the divergence between the
theory predictions and simulation results in the large κDσ regime.
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positive charge type while keeping ρQ/J = 0.5/σ2 fixed. Specifically, we set the negative

charge and spin values to −1, and the positive charge and spin values to +2.2 or +3 (these

specific valences were chosen so that the lattice with L = 32σ could be neutral with proper

ratio of + and − charges). Physically, varying the valence of oppositely charged spins allows

us to account for the fact that real ions vary in their valence.

A simple modification of the mean field theory presented in Section 3.6 leads to a qual-

itative prediction of the simulation results, specifically capturing the low κDσ regime and

the point at which regimes change, κ∗Dσ. The modification to the theory presented in past

work can be expressed simply as

Q′ → Q |q+q−| , (6.1)

and

J ′ → J |s+s−| (6.2)

with Q, J the effective strengths of the Coulomb and Ising interactions, respectively, q+,

q− the charge valences, and s+, s− the spin valences. The scaling of the inverse screening

length for q+ = s+ = 2.2 and q+ = s+ = 3 is shown in Fig. 6.5a,b, respectively. The

simple mean field theory does a good job predicting the DH regime, and does reasonably as

predicting the regime change. However, in the large κDσ regime for the parameters chosen

here, the predictions of the theory and the observations from simulation disagree. One

possible explanation for this disagreement is that the breakdown of the continuum mean

field theory for large ρQ/J discussed in Chapter 3 persists here, leading to a negative critical

temperature and to poor predictions in the large κDσ regime as a result.

6.2.2 With defects

We generalize the model to consider defects as well, ie. sites which are unoccupied by a

charge or, equivalently, which are charge 0. In previous work on the FI model, the number
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Figure 6.6: Scaling of inverse screening length for ρQ/J = 0.5/σ2 and ρ0 = 0.75. The simple
modification to the mean field theory captures the DH regime and does a reasonable job
predicting the regime change point, κ∗D, but predicts larger length scale decay than observed
in theory in the large κDσ regime.
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of defects has been tuned to control the density of charges, and hence, κDσ [66]. Here, we

select a few charge densities, and tune the temperature as before.

First, we consider the case that the charges are symmetric, but have a density less than

1 on the lattice. In this case, considering for generality the valence of charges, we find

Q′ → Qρ0 |q+q−| , (6.3)

and

J ′ → Jρ0 |s+s−| (6.4)

where ρ0 is the dimensionless number density of occupied sites on the lattice. The cases of

ρ0 = 0.75 for q+ = s+ = 2.2 and q+ = s+ = 3 are shown in Fig. 6.5c,d, respectively. As

in the case just discussed, although the DH and regime change are well-predicted by this

simple mean field theory, the large κDσ regime is not well captured.

When ρρ0Q/J is small enough to avoid the continuum mean field breakdown, the sim-

ple proposed modification to the theory gives qualitatively accurate predictions. Fig. 6.6

shows the scaling of the inverse screening length when ρ0 = 0.75 and ρQ/J = 0.5/σ2 with

symmetric charges.

6.2.3 Asymmetric size

Another generalization of the solvent we plan to study is a solvent with asymmetrically-

sized ions. In the real world, ions are always asymmetrically sized, and considering the

importance of short-range length scales in the physics of the large κDσ regime (see discussion

in Chapters 2 and 3), size asymmetry may have non-trivial effects. One simple way to achieve

size-asymmetric ions in the FI framework in three dimensions is to make all of one type of

charge carrier, say the −, into a 2σ × 2σ × 2σ cube where each site has a valence of −1/8.

Gauss’s law ensures that other sites on the lattice will see this “large ion” as having a charge
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of −1 concentrated at its center of mass. A simulation study of size-asymmetric ions is

underway.

6.3 Future work

The work presented in this Chapter only represents the first step towards generalizing the

FI model introduced in Chapter 3. The charge correlations induced by a solute are shown

to decay with the same length scale as bulk charge correlations, as expected from linear

response. We would like to study the interactions between solutes, but doing so requires

surmounting some technical obstacles. One of the strengths of the FI model is that its

simplicity allows it to be scaled to larger systems more easily than more complicated models.

We are interested in the probing the possibility of many-solute “trapped” superlattice states,

as hinted at in Chapter 4. The oscillatory nature of the repulsive potential between solutes

may lead to local free energy minima and to such superlattice states.

We are also very interested in furthering out study of asymmetric solvents (and perhaps

how these interact with solutes). A generalization of the mean field model derived in Chap-

ter 3 seems to be sufficient to explain the DH regime and the regime changeover for the

current results, but questions remain regarding the large κDσ regime. At a minimum, the

theory must be improved so that the critical temperature does not become negative. Grous-

son and Viot [42] develop a theory that avoids a negative critical temperature by a more

careful accounting for the lattice nature of the problem, and such an approach might be of

use here. Another related possibility is the explicit inclusion of the finite size of “particles”

or cells, as in the work of Adar and coworkers [57], discussed in Section 2.6. Size- or shape-

asymmetric solvent is also of interest because of our intuition that the short-range features

of ionic fluids play such an important role in bringing about the large κDσ regime. The

interactions between size- or shape-asymmetry and the confinement by interacting solutes

could lead to some interesting physics.
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6.4 Appendix: Allowing solutes to translate and rotate

Solutes are represented as a center of mass and a set of positions relative to the center of

mass that specify the sites which are contained in the solute. The sites contained in the

solute have an identity that is fixed at the start of the simulation. Here, all sites have a

value of +1. For each step of the simulation, a random site is selected. If that site is not

contained within a solute, a swap or cluster move is attempted. When that site is contained

within a solute, the containing solute is the subject of a move attempt. d numbers, with d the

dimension, are generated uniformly up to some user specified maximum. These d numbers

constitute the proposed center of mass translation. The solute, and, optionally, a shell of

solvent around the solute (to attempt to reduce the energy cost of the proposed move), is

moved, and the solvent displaced by the solute’s new proposed position is randomly placed

within the vacated sites. The energy of the new configuration is computed and the standard

Metropolis rule is used to determine if the move is accepted. Solutes may also have rotational

freedom. For solutes with rotations enabled, an additional step occurs during the proposal

of the move. Rotation matrices about each axis are chosen in a random order, and with a

random magnitude, from [0, 3π/2] in increments of π/2.

6.4.1 Increasing the probability of solute moves by relaxing local solvent

For large κDσ, or low temperature, the solvent forms layers of charge in response to the

solute. When the solute is relatively large, any proposed solute move will cause a signif-

icant disruption of the solvent layering, leading to a prohibitively high energy cost and a

vanishingly small probability to accept the move. One method to increase the probability of

moves is to move not just the solute, but also the local solvent shell around the solute, which

can reduce disruption in the local region around the solute. Another method is to relax the

solvent in a local region around the solute as a part of the solute move. To satisfy detailed

balance, the local region around the solute and its proposed location must be relaxed before
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and after the move. The result of the analysis is that when these local regions are relaxed

with an effective temperature Teff > T , it is possible for the overall proposed move to be

more likely to be accepted than a simple, no-relaxation solute move. This method is detailed

now.

Consider a Monte Carlo move attempt which consists of the following stages on a trial

lattice initialized to the same starting configuration as the current lattice: (1) randomly

selecting a translation of the solute center of mass, but not yet moving the solute; (2) within

a local solvent region surrounding both the current solute position and proposed solute

position, make Nlocal swap move attempts at effective temperature Teff which may not be

equal to T ; these are accepted or rejected according to the standard Metropolis method; (3)

move the solute to its proposed position; (4) make another Nlocal swap move attempts at

temperature Teff within the same region as part (2). This whole set of operations is then

accepted or rejected according to the Metropolis prescription. The pre-solute move Nlocal

swap moves are required in order to make the entire move symmetric to satisfy detailed

balance.

I’m going to write down the detailed balance condition, and then find an expression for

the acceptance probability ratio of the move just described. Comparing this expression to

that of the solute move alone without any solvent relaxation will provide the conditions

under which it is favorable to relax the local solvent.

pi p
i→f
prop p

i→f
acc = pf p

f→i
prop p

f→i
acc , (6.5)

with pi and pf the probability of observing the initial or final state, respectively, pprop the

probability of proposing a particular move, and pacc the probability of accepting a particular

move. It can be manipulated to

p
i→f
acc

p
f→i
acc

=
pf
pi

p
f→i
prop

p
i→f
prop

. (6.6)
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Next, we write down each of these fractions on the right hand side in order to compute the

acceptance probability. The change in energy due to the proposed move described above can

be written

Ef − Ei = ∆Esu:i
swap + ∆Esu + ∆E

su:f
swap, (6.7)

with ∆Esu:i
swap the change in energy due to the first set of swaps which are accepted while the

solute (abbreviated “su”) is at position i, ∆Esu the change in the energy when the solute is

moved after the first set of swaps and before the second, and ∆E
su:f
swap the change in energy

for the final set of swap moves after the solute has been moved on the trial lattice. Then the

first fraction on the right hand side of Eq. 6.6 can be written

pf
pi

= exp
[
−β
(

∆Esu:i
swap + ∆Esu + ∆E

su:f
swap

)]
, (6.8)

with β the inverse of the thermal energy.

Now consider the second fraction, which takes the form

p
f→i
prop

p
i→f
prop

=

[∏Nlocal
j p

su:f
swap.j

]f→i
×
[
p
su:f→i
prop

]
×
[∏Nlocal

j psu:i
swap.j

]f→i
[∏Nlocal

j psu:i
swap.j

]i→f
×
[
p
su:i→f
prop

]
×
[∏Nlocal

j p
su:f
swap.j

]i→f , (6.9)

where the probability to propose a solute move from i→ f is

p
su:f→i
prop

p
su:i→f
prop

=

Vsu
V ×

1
Vlocal

Vsu
V ×

1
Vlocal

= 1, (6.10)

with Vsu/V the probability to uniformly select the solute from amongst all lattice sites and

1/Vlocal the probability to propose a specific new center of mass amongst Vlocal options. The

psu:state
swap.j terms are different from other pprop terms which are usually uniform because each
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swap move is a self-contained Metropolis move which can either be accepted or rejected

psu:state
swap.j = min

[
1, exp

(
−βeff∆Esu:state

swap.j

)]
. (6.11)

Consider solute state i. There is a sequence of Nlocal swap moves starting from the initial

configuration and ending with the configuration from which the solute is moved. In the

hypothetical reverse move, starting from f , swap moves occur, the solute is moved, and then

the set of Nlocal swap moves is traversed in the opposite direction, ie. if we number the swap

move states 0, 1, . . . , Nlocal − 2, Nlocal − 1, then in the reverse move they are traversed

Nlocal − 1, Nlocal − 2, . . . , 1, 0. Then

[∏Nlocal
j psu:i

swap.j

]f→i
[∏Nlocal

j psu:i
swap.j

]i→f =

∏
j min

[
1, exp

(
βeff∆Esu:i

swap.j

)]
∏
j min

[
1, exp

(
−βeff∆Esu:i

swap.j

)]
=
∏
j

exp
(
βeff∆Esu:i

swap.j

)
,

(6.12)

where the sign differs in the numerator and denominator because the steps happen in opposite

directions. Similarly,

[∏Nlocal
j p

su:f
swap.j

]f→i
[∏Nlocal

j p
su:f
swap.j

]i→f =
∏
j

exp
(
βeff∆E

su:f
swap.j

)
. (6.13)

Then using

∆Esu:state
swap =

∑
j

∆Esu:state
swap.j , (6.14)
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the ratio of proposal probabilities, Eq. 6.9 can be rewritten,

p
f→i
prop

p
i→f
prop

=
∏
j

exp
(
βeff∆Esu:i

swap.j

)
×
∏
j

exp
(
βeff∆E

su:f
swap.j

)
= exp

(
βeff

[
∆Esu:i

swap + ∆E
su:f
swap

])
.

(6.15)

Thus, substituting the expressions for the Boltzmann probability ratio, Eq. 6.8, and the

move proposal probability ratio, Eq. 6.15, into the detailed balance Eq. 6.6,

p
i→f
acc

p
f→i
acc

= exp
[
−β∆Esu −

(
β − βeff

) (
∆Esu:i

swap + ∆E
su:f
swap

)]
. (6.16)

Then, neglecting energy fluctuations and letting Teff → T from above, which allows β∆Esu

to remain unchanged relative to the solute move without local solvent relaxation, if

−
(
β − βeff

) (
∆Esu:i

swap + ∆E
su:f
swap

)
> 0, (6.17)

then allowing solvent relaxation moves increases the move acceptance probability relative to

no solvent relaxation moves.
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CHAPTER 7

SHAPE AND NUCLEATION DYNAMICS OF NEMATIC

TACTOIDS IN CONTACT WITH WETTABLE COLLOIDS

This chapter reproduces material from a draft of a manuscript being prepared for submission.

That work was in collaboration with Kimberly Weirich, Eli Alster, Thomas A. Witten,

Margaret L. Gardel, Kinjal Dasbiswas, and Suriyanarayanan Vaikuntanathan. I am the first

author of the paper, and contributed to both simulation and theory portions of the work.

Recent experiments have shown how nematically-ordered tactoid shaped actin droplets

can be reorganized and divided by the action of myosin molecular motors. In this paper,

we consider how similar morphological changes can potentially be achieved under equilib-

rium conditions. Using simulations, both atomistic and continuum, and a phenomenological

model, we explore how the nucleation dynamics, shape changes, and the final steady state of

a nematic tactoid droplet can be modified by interactions with model adhesive colloids that

mimic a myosin motor cluster. Our results provide a prescription for the minimal conditions

required to stabilize tactoid reorganization and division in an equilibrium colloidal-nematic

setting.

7.1 Introduction

Nematic liquid crystals comprise rod-like particles that mutually align along a preferred

direction (known as the “director”) to create a fluid phase with long-range orientational

order. The elastic energy cost of deviating from such preferred directions of alignment

can be leveraged to sculpt complex free energy landscapes that direct the self-assembly of

colloids and nanoparticles [126]. There is renewed interest in liquid crystals because biological

matter, including collections of elongated cells [127, 128], and the structural components

of their cytoskeleton – biopolymer filaments such as actin and microtubules [129, 130] –
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exhibit nematic order including active matter phases with large-scale flows [131]. Recently,

collections of short, rod-like actin filaments have been shown to form nematic droplets with a

characteristic elongated tactoid shape [132], that can incorporate the molecular motor myosin

to undergo self-organization and shape transformation [5]. In particular, these nematic

droplets of actin can be divided into two equal-sized droplets by clusters of myosin motors

that robustly self-organize to the droplet midplane [5]. The authors suggest that the droplet

deformation can be understood to arise from local realignments of actin filaments by motor

activity that cluster the motors and the surrounding actin into an “aster”-like arrangement

[133] with actin filaments radiating outwards from the central myosin cluster. Specifically,

they model the cluster of motors as an adhesive (“wettable”), spherical colloidal particle

that imposes a perpendicular alignment (“anchoring”) on the actin nematic at its surface

[134]. In this work, we investigate with equilibrium computer simulations the probable

intermediate and final minimal energy configurations of such a nematic droplet wetting a

colloidal surface, illuminating the assumptions implicit in, and placing strong constraints on,

the model presented in Ref. [5].

We construct a minimal model colloid that mimics the geometric constraints imposed by

and interactions due to the aster-like object created by the action of the molecular motors.

We are interested in probing how our model colloids affect the shapes of nematic droplets

within simple equilibrium simulation models that capture the general properties of nematic

order without focusing on the detailed molecular features of the actomyosin system, including

myosin motor activity. Our choice to neglect motor activity is consistent with the observed

suppression of active mechanical forces as individual myosin filaments cluster [130]. We

apply two frameworks – the Gay-Berne (or GB) molecular dynamics model [135] as well as a

coarse-grained continuum phase field model – to gain insight into the nucleation and shape

changes of tactoids in contact with colloids.

Here, we report the observation of long-lived dynamic states in which multiple tactoids
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associate with our model aster-like colloid. Ultimately, these states are found to be unstable

within the simple, equilibrium models we explore. The ground state is a single tactoid

associated at its pole with a colloid, resembling prior experimental observations in molecular

liquid crystal droplets [136, 137, 138, 139]. We identify the feature – the formation of a

molecularly-thin layer of nematic fluid on the colloid surface – that undermines the long-

term stability of the two-tactoid state explored in Weirich et al. [5]. We then generalize

the phenomenological model from that work to identify possible conditions under which a

two-tactoid state may be stable in the absence of active forces. Together, our results provide

constraints on the class of detailed equilibrium molecular models that can be used to obtain

the stable two-tactoid states that resemble those observed in Ref. [5].

The rest of the paper is organized as follows. We first describe the results of our GB

molecular dynamics simulations in Section 7.2. In Section 7.3 we report the results of our

continuum phase field simulations, which both complement and extend beyond our MD

results. Finally, we outline a phenomenological model that captures some of our simulation

observations in Section 7.4, discuss the implications of our work, and predict the set of

additional features a model would need to allow for stable, divided tactoids.

7.2 Colloid-tactoid interactions in a molecular dynamics model

7.2.1 Nematic tactoids associate with aster-like colloids

Inspired by experimental and theoretical studies on actomyosin clusters [5, 140], in which

myosin motors are thought to organize actin filaments into an “aster”-like (or radial) cluster,

we study how an aster-like colloid interacts with tactoid droplets. To simulate rod-like

particles in molecular dynamics, we use the GB model [135], implemented in the LAMMPS

software package [109, 141]. GB particles are elongated ellipsoids with an aspect ratio κ

and with aspherical well depths which are described by a parameter κ′ of similar form to
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Figure 7.1: Tactoids form from GB rods in molecular dynamics simulations with T = 0.55,
N = 2000, L = 75σ0, and can interact favorably with colloids. (a) Schematic for the Gay-
Berne model potential for our choices of parameters when rods are parallel. Rods interact
based on their distance and orientation, and depend on two aspherical parameters: κ, the
aspect ratio, here set to κ = 3, and κ′, the ratio of aspherical well depths (see Appendix 7.5.1
for more details). The attractive part of the potentials for two rods with the same orientation
and κ′ = 1 and κ′ = 0.5 are plotted in the second and third portion of this subfigure. The
end-end well depth is deeper by a factor of two for κ′ = 0.5. Tactoids formed from rods with
κ′ = 1 are the subject of Section 7.2.1, while Section 7.2.2 studies κ′ = 0.5. (b) A snapshot
from a molecular dynamics trajectory of a tactoid with κ′ = 1 from a simulation without
a colloid. (c) The director field of the cross-section at the midplane of a tactoid extracted
from a molecular dynamics trajectory of a tactoid with κ′ = 1 from a simulation without a
colloid. (d) A snapshot of the homeotropic colloid used in molecular dynamics simulation.
This colloid is composed of 421 fixed rods with their centers placed on the surface of a
sphere with radius 3.5σ0 and is the colloid we will use in the MD portion of this work. (e) A
snapshot from molecular dynamics simulation of a Gay-Berne tactoid with κ′ = 1 associated
with a homeotropic colloid. In this snapshot, the immobilized colloid is colored yellow, the
molecularly-thin splayed nematic layer adsorbed to the colloid is colored blue, and all other
rods are colored red. (f) The director field extracted from a molecular dynamics trajectory
of a tactoid with κ′ = 1 associated with a homeotropic colloid. Same color scheme as (e).
All MD snapshots are visualized using Ovito [2].
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the aspect ratio; a schematic of the GB potential for parallel rods is shown in Fig. 7.1(a).

κ′ < 1 represents stronger end-to-end interactions between the rod-like particles. Our choice

to use the GB model was informed by its demonstrated ability to form tactoid droplets

with appropriate choice of parameters [142, 143, 4] and its simplicity, which makes it a good

minimal model. We provide details on our choice of two parameterizations and simulation

protocol in the Appendix Section 7.5.1 but briefly, we use an aspect ratio κ = 3, and ratio

of aspherical well-depths κ′ = 1, which have been well studied in the literature and which

ensures that nematic-vapor coexistence occupies a significant region of phase space [142].

Later, in Section 7.2.2 we vary κ′. Our basic simulation protocol is to start with a vapor

of GB rods and to progressively quench the temperature until the system is well within the

nematic-vapor coexistence region where tactoids do indeed form, see Fig. 7.1(b,c). There, we

show a snapshot from simulation and the director field of the cross-section at the midplane

of a tactoid averaged over a trajectory, respectively. Tactoids formed with the parameters

discussed now have internal dynamics similar to a liquid.

Our model for a colloid, discussed in more detail in Appendix Section 7.5.2, is a set of GB

particles whose centers of mass are fixed upon the surface of a sphere and are oriented radially,

see Fig. 7.1(d). These particles are not allowed to move or rotate during the simulation. This

model colloid was constructed to mimic the aster-like arrangement of actin filaments caused

by molecular motor action. Throughout this work we report results for a colloid composed

of Nc = 421 fixed particles that share the fluid pair potential and whose centers of mass

are located on a sphere of radius Rc = 3.5σ0 (with σ0 the short-axis particle diameter). We

tested other colloid sizes and surface densities as well, choosing this size to limit the scale of

simulations.

When a vapor of N = 2000 rods is quenched in the presence of the colloid described

above, first a single-molecule-thick layer of radially-oriented rods forms upon the surface of

the colloid. In Fig. 7.1(d,e), the rods making up the colloid are colored yellow and those
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Figure 7.2: In MD, two tactoids may nucleate on the surface of a homeotropic colloid with
appropriate choice of parameters, but they are an unstable configuration that gradually
evolves into a more stable one.. Here, N = 2000, L = 96σ0. (a) A snapshot from a
molecular dynamics trajectory of two roughly equal-sized tactoids with κ′ = 0.5 associated
with a homeotropic colloid. In this snapshot, the immobilized colloid is colored yellow, the
thin, splayed nematic monolayer adsorbed to the colloid is colored blue, and all other rods
are colored red. (b) The director field of the cross-section at the midplane of two tactoids
extracted from a molecular dynamics trajectory of two roughly equal-sized tactoids with
κ′ = 0.5 associated with a homeotropic colloid. Same color scheme as (a). (c) Time series
data showing the difference in particle number between two tactoids for κ′ = 0.5. This
particular nucleation event resulted in two unequally-sized tactoids at around t ∼ 1000t0.
The smaller tactoid slowly loses particles, which are incorporated into the larger tactoid,
until it disappears, leaving only the larger tactoid. Snapshots are representative of the decay
of smaller tactoid. Same color scheme as (a). (d) Time series data showing the difference
in particle number between two tactoids, demonstrating the instability of two tactoids for
κ′ = 1. The configuration shown in (a) was used as the initial condition, and κ′ was changed
to 1 at t = 0. The tactoids equilibrate to their new interaction potential, and then begin
to translate on the colloid surface, before combining after around 300t0. Snapshots show a
selection of the configurations as the two tactoids combine. Note the rapid timescale relative
to (c). Same color scheme as (a). All MD snapshots are visualized using Ovito [2].
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comprising the splayed nematic layer are blue. After the association of the thin splayed ne-

matic layer, a tactoid nucleates upon its surface, leading to a state like shown in Fig. 7.1(e,f),

showing a snapshot and the ensemble average director field, respectively. Here, the tactoid

has some freedom to translate on the colloid-nematic layer surface, but the rough nature of

the surface does not allow unimpeded translation (by “translation” we refer to a movement

of the interface between the tactoid and the colloid and a corresponding reorientation of the

entire tactoid to remain pointing radially outward from the colloid). As has been observed

in past studies [136, 137, 138, 139], the tactoid wets the colloid at one end. For an aster-like

colloid, such a configuration minimizes the perturbation to the tactoid director field at the

cost of reducing the area of the colloid that is wet by the droplet. As suggested by Weirich et

al. [5], the area that is wet can be increased by dividing the tactoid droplet into two, at the

cost of increasing the surface and elastic energies. In our simple GB model, with κ′ = 1, for

tactoid droplets with liquid-like internal dynamics, the adhesive wetting interaction between

the colloid and the tactoid is too small to induce such states – and our ability to increase the

wetting interaction strength is limited by the emergence of a molecularly-thin layer. Next, by

reducing κ′, we increase the strength of the attractive interaction between the ends of all GB

rods, both fluid and colloid, at constant temperature, in order to: (i), increase the wetting

interaction even between the nematic layer and the tactoids, and (ii), slow down the internal

dynamics of the tactoid droplets to better examine intermediate, unstable nucleation states.

7.2.2 Strong interactions and slow dynamics can lead to transient

nucleation of multiple tactoids on a single colloid

To examine intermediate states in the nucleation of tactoids on colloids, and to increase the

wetting adhesion strength even in the presence of a molecularly-thin splayed nematic layer,

we increase the well depth of the end-end interaction of rods by a factor of two (ie. set

κ′ = 0.5) while leaving temperature constant (see Appendix 7.5.1 for details and Fig. 7.1(a)
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for heatmap plot of potential between parallel rods). Tactoids nucleate similarly to the

previous parameter set where κ′ = 1, but these have a longer aspect ratio and much slower,

more rigid internal dynamics. The tactoids diffuse much more slowly on the surface of the

colloid as well. For these parameters, as the initial tactoid grows on the colloid surface, a

second tactoid may nucleate as well. This is observed to occur the large majority of the time

with N = 2000 fluid rods in a cubic simulation box with sides L = 96σ0 and can occasionally

lead to two highly symmetric tactoids, see Fig. 7.2(a,b) for snapshot and director field.

Two tactoid states, here, are able to exist on a single colloid not due to a lower free energy,

but instead due to the slow internal dynamics and colloid surface translation, relative to the

tactoid nucleation and growth timescales. On rare occasions, two fully formed tactoids with

κ′ = 0.5 were observed to combine by translation on the surface of the colloid. Further, when

the tactoids greatly differ in size, the smaller one can be seen to be slowly losing particles

until eventually only a single tactoid remains, see Fig. 7.2(c) for a particular trajectory

particle number time series and snapshots over time. These observations taken together lead

us to hypothesize that the ground state for the system in both parameter sets is a single

tactoid, and that the two tactoid state is either metastable or is unstable, but with a slow

decay to the ground state due to the slow relaxation dynamics of the droplets.

The instability of the divided drop configuration is more apparent for simulations done

with the κ′ = 1 parameter set. In Fig. 7.2(e), we describe simulations in which we take the

divided configuration shown in Fig. 7.2(a), generated with the “slow-dynamics” κ′ = 0.5,

and change to the “faster” κ′ = 1 parameter set. As shown in the time series in Fig. 7.2(d),

the two tactoids rapidly translate on the surface and combine into one (compare timescales

with Fig. 7.2(c)). It is clear, then, that for the “fast” κ′ = 1 parameters, one tactoid is a

lower free energy state than two tactoids.

We note that in order to accurately characterize the stability or metastability of various

configurations, it is necessary to compute the free energy of the tactoid-colloid system as
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a function of order parameters such as the interdroplet angle or the sizes of the various

nucleating tactoids. Such free energy calculations are beyond the scope of this work. Rather,

in Section. 7.3, we explore using continuum simulations the various potential intermediate

and ground states of the tactoid-colloid systems. While the continuum simulations will fail

to resolve fine molecular details, they allow us to probe phenomena on longer time and length

scales.

7.3 Tactoids and homeotropic colloids in a continuum phase field

simulation

The long length and time scale behavior of the nematic phase, particularly its elastic distor-

tions and defect structures, is traditionally described by the Landau-de Gennes theory [134]

which is also used to model nematic-colloid interactions [144]. In contrast with the bulk,

nematic droplets resulting from aggregation of rod-like particles have free interfaces that

separate the high density nematic from the lower density isotropic or vapor phases. In fact,

the alignment of the rods at the droplet interface is a key feature that determines the charac-

teristic tactoid shape [145]. Thus, a continuum description of the nucleation of tactoids and

their shape dynamics should include a density in addition to the nematic order parameter.

Here, we adapt a phase field model developed for lyotropic liquid crystals [146, 147] to study

the interaction between a nematic tactoid droplet and an adhesive colloid. To mimic the

binding and arrangement of actin filaments into an aster geometry by a myosin cluster, the

model colloid must perform two roles, namely it must interact favorably with the nematic

fluid and it must also provide a tendency for the nematic field at its surface to orient radially,

also referred to as homeotropic anchoring [126]. We now describe how to construct such a

tactoid-colloid model.

Since a nematic tactoid involves bend and splay but not necessarily twist of the director

field, we use a 2D description, that is equivalent to looking at a planar section of the full
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Time

Figure 7.3: Each image shows the nematic density field, Q from continuum simulation for the
same tactoid droplet, in contact with a colloid that imposes homeotropic (radial) anchoring,
at different times during the relaxation of the droplet shape. The tactoid is initialized with
the colloid at its center. Colors show the magnitude, S, and lines show the director, n, of
the nematic field. The scale bars in each case correspond to 10 grid points. The simulation
box is 120 × 120, only part of which is shown here. The top panel shows the situation for
a smaller colloid (radius, r0 = 4) which has weaker interactions with the nematic. Here,
topological defects, seen as regions of depleted nematic order on either side of the colloid,
are induced but the overall tactoid shape is undeformed. This resembles the well-known
situation for colloids in bulk nematic. The bottom panel shows the situation for the larger
colloid size (radius, r0 = 8) with stronger interactions with the nematic. Here, the tactoid
shape can be significantly deformed, resulting in an intermediate divided state. The two
divided droplets ultimately coalesce forming a single tactoid with the colloid at its pole. The
colloid is not shown directly but corresponds to the region of depleted nematic density at
the center of the tactoid where the colloid displaces the fluid.
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3D tactoid. The 2D nematic tensor, defined as Qij = S(ninj − 1
2δij), contains the scalar

magnitude, S = 1
2Tr Q2, and the director, n, or direction of the local nematic order. The

model free energy coupling the 2D, nondimensionalized density, ψ(x), and nematic, Qij(x),

order parameter fields is written as [147],

F =

∫
d2x

[
− v2

2
ψ2 − v3

3
ψ3 +

v4

4
ψ4 +

B

2
(∇ψ)2

+
1

4
Q2
ij(Cψ(ψ − 1) +D1) +

S1

16
Q2
ijQ

2
kl

+
D2

2
(∂kQik)2 +B3∂kψ∂iQik

] (7.1)

which includes the usual Landau free energy terms describing a first order transition in ψ,

the usual Landau-de Gennes terms describing a nematic transition in Q, and two terms

coupling ψ and Q. The first of these represents the transition to nematic order at the

high density phase. The second with the coefficient B3 describes a “soft” anchoring or

alignment of the nematic director with the external droplet boundary. We work in the

“equal constant” approximation, where the energy cost of bend and splay are both included

in the term with prefactor D2. Note that while this free energy is for a phenomenological

phase field model that describes the nematic-isotropic (or nematic-vapor) interface and can

nucleate tactoids for suitable parameters, it can also be derived by coarse-graining molecular

interactions [146, 147].

The relaxation dynamics of the tactoids are specified by the standard dynamics for the

conserved scalar density field (Model B),

∂tψ(x, t) = τQ∇2 δF

δψ(x, t)
, (7.2)

and the nematic order parameter field (Model A),

∂tQij(x, t) = −τψ
δF

δQij(x, t)
. (7.3)

130



where τQ and τψ are characteristic time scales of the phase dynamics of the nematic and

density fields. These dynamical equations in suitably nondimensionalized form are solved

on a grid with periodic boundary conditions using a pseudospectral scheme with the XMDS

software package [148]. For appropriate choice of parameter values, we see tactoids nucleate

from a random initial configuration. See Appendix Section 7.5.8 for details of implementation

and table of parameter values used to form tactoids.

To study the effect of a colloid on the droplet structure, we model the spherical colloid by

an additional static field, φ(x, y) = 1
2

[
1 + tanh

(
r0 −

√
(x− x0)2 + (y − y0)2

)
/t0)

]
, where

(x0, y0) and r0 specify the center and radius or size of the colloid respectively, and t0 is

the thickness of the diffuse interface of the colloid as is usual in a phase field model. We

incorporate the colloid surface-droplet interaction, anchoring and adhesion, in the free energy.

The perpendicular or radial anchoring of the droplet nematic director at the colloid surface

can be included in the free energy as the energy cost of deviating away from a preferred

value of the nematic tensor at the colloid [149, 150], which is proportional to (Qij −Q0
ij)

2.

This preferred value of Q0
ij ∝ ∂iφ∂jφ is normal to the colloid in direction (given by ∂iφ).

The corresponding free energy term is then defined as 1
2B4∂iφQij∂jφ. This term is also

an effective surface adhesion since the nematic order, Q, and correspondingly, the density,

ψ, are enhanced at the colloid surface because of it. An additional term, Wφψ, leads to

exclusion of nematic fluid from the bulk of the colloid, and helps speed up the simulation

dynamics.

We initialize the colloid at the center of a tactoid generated in our continuum model,

analogous to the situation for actomyosin tactoids reported in Ref. [5], and let the droplet-

colloid relax towards its minimal energy state. Fig. 7.3 shows the tactoid nematic order

parameter at different instants during the course of the simulation for two different sizes

of colloid in contact with the same initial tactoid droplet. We find that the relaxation

pathway depends significantly upon the relative sizes of the tactoid droplet and the colloid,
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with a larger perturbation of the droplet shape seen for larger colloids as expected. In fact

for larger colloids, the droplet is initially divided into a two-tactoid state as seen in our

MD results, Fig. 7.2, and as predicted by the model presented in Ref. [5]. For a smaller

colloid, the tactoid surface is unperturbed, but a quadrupolar topological defect forms near

the colloid surface, see Fig. 7.3, upper panel. This resembles the expected situation for a

disk colloid in a 2D bulk nematic [151]. For a fixed tactoid size, increasing the size of the

colloid placed into the droplet pushes the defects closer to the nematic-vapor interface, until

that interface bows inward toward the defects. The defects can thereby be expelled from

the droplet, leading to a state with two tactoid droplets associated with opposite sides of

the colloid, see Fig. 7.3, lower panel. Defect-induced division of a different model nematic

droplet was also predicted theoretically in Ref. [152]. At longer times however, the two

divided droplets coalesce by diffusing around the colloid and form a single tactoid with the

colloid at its pole. This equilibrium state of the system is thus consistent with what is seen

in the MD simulations, and is expected for a single tactoid associated with a colloid with

strong homeotropic anchoring at its surface. These observations connect traditional studies

of colloid-induced defects in bulk nematics and the deformation and division of tactoid

droplets by colloids.

7.4 Discussion

In Ref. [5], it was proposed that the observed division of actin tactoidal droplets by clusters

of myosin motors could be explained by modeling the myosin cluster as a spherical colloid

that aligns the actin nematic around it. Specifically, we used the bipolar model for tactoid

structure in conjunction with anchoring and adhesion of the actin fluid phase at the myosin

cluster interface, to show that a divided droplet state may be energetically favored over a

single whole droplet, because it can then increase its area of contact with the colloid. In this

paper, we have demonstrated that colloidal interactions may indeed deform nematic droplets,
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Figure 7.4: A schematic of a tactoid with size and shape parameters: the radius, R, and
the tip angle α, as defined in Ref. [3]. This tactoid is associated at its pole with a colloid of
radius a that imposes homeotropic (radial) alignment on the fluid it is in contact with. The
colloid surface may be covered by a thin splayed nematic layer of thickness λ of the order of
the rod length.

and that even if droplet division is not stable, the ultimate coalescence of two droplets may be

slowed down through attractive and radially aligning interactions with a colloid. Specifically,

we have reported the observation, within a molecular dynamics and a continuum simulation

framework, of dynamic states in which multiple tactoids can be associated with a single

colloid. We have shown that these multi-droplet states are unstable within both these

models. We find instead that the ground state is a single, whole tactoid associated at

its pole with a colloid. In the present section, we generalize the phenomenological model of

Weirich et al. [5] to explain our results. We then discuss our results in a broader context, and

describe a set of minimal extensions beyond the simulation models used here that may allow

for the realization of stably divided tactoids. We note, as in Ref. [5], that in the limit that

the tactoids are much large than the colloids, the driving forces for tactoid recombination

overwhelm any driving forces for tactoid division, since the latter simply depends on colloid

size. Hence, in the limit of thermodynamically large tactoid drops, we anticipate that the

stable ground state is simply corresponds to single undivided droplet.

A feature not included in the model droplet-colloid free energy in Weirich et al. [5] was the

possible formation of a molecularly-thin splayed nematic layer on the surface of the colloid,

which was a recurring feature observed in our GB and continuum simulations. Instead, it
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Figure 7.5: Set of phase diagrams for fixed λ = 0.5a and total tactoid volume Vt = 2×4πa3/3
with increasing Av = 1.0, 1.3, 1.6. The blue line in each plot divides the region where a
molecularly-thin layer forms (above the blue line, where Fl < 0 or w > ε) from the region
where no molecularly-thin layer forms (below, where Fl > 0 or w < ε). Above the blue line,
the formation of the molecularly-thin layer replaces the wetting parameter, w, with a weaker
“effective wetting” of ε, since, upon tactoid association, the area fraction covered by the
tactoid, ft is subtracted from the total area fraction, fl of the molecularly-thin layer in the
energy penalty term, ie. fl → fl− ft, see discussion in main text or Appendix Section 7.5.9.
Thus, the possible existence of the thin nematic layer provides an upper bound on w. For
a colloid to support (meta)stable divided tactoids, the nematic-vapor interfacial anchoring
energy parameter, Av, must be above a certain value. Here, multiple tactoids are a local
free energy minimum between the orange and blue lines, for which there is no wetting layer,
or above the blue line and to the left of the black line, for which multiple tactoids associate
with the wetting layer. However, when Av is small enough, there is no “divided” region, as
seen in the phase diagram for Av = 1.0.
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was assumed there the orientation of the director field was strongly anchored parallel to

the droplet nematic-vapor interface, ie. strictly planar anchoring as in the bipolar tactoid

model [145, 3]. However, such a nematic layer is incompatible with the simultaneous strong

planar anchoring at the droplet-vapor interface and strong homeotropic anchoring at the

droplet-colloid interface. Relaxing the strong nematic-vapor anchoring constraint allows us

to constrain the conditions under which two or more droplets can stably associate with

the colloid without coalescing. Thus, motivated to more closely describe the conditions of

our present simulation models, we relax this strong nematic-vapor anchoring constraint, by

adding an anchoring energy cost, per unit area, at the nematic-vapor interface to the overall

free energy ∼ γAv (v · n)2, with γ the surface tension, Av the dimensionless nematic-vapor

anchoring coefficient, v the interface normal and n the director [149, 145]. We can then write

down the free energy cost of a molecularly-thin splayed nematic layer adhered to the surface

of the colloid. Specifically, we consider a layer of radially-directed nematic of thickness λ

covering a dimensionless fraction fl of the surface area of a colloid of radius a, see schematic

in Fig. 7.4. The free energy can be written as

Fl =

[
−w +

4K

a

λ

a
+ γ (1 + Av)

(
1 +

λ

a

)2
]
fl 4πa

2

= [−w + ε] fl 4πa
2,

(7.4)

with w the strength of the adhesive colloid-nematic wetting interaction, and K the Frank

elastic constant in the one-constant approximation (see Appendix 7.5.9 for derivation). In

the second line, we have grouped the energy penalties associated with the splayed nematic

layer into a single term, explicitly, ε ≡ 4K
a
λ
a + γ (1 + Av)

(
1 + λ

a

)2
. Thus, a thin splayed

nematic layer is favored to form when the adhesive wetting interaction strength between

the colloid and the nematic becomes larger than the penalties associated with the stressed

nematic state (ie. splay elastic energy, surface energy, and anchoring energy): w > ε.

It follows that there are two possibilities we need to consider: the association of one or
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more tactoids with the colloid in the absence (Fl > 0), or the presence (Fl < 0) of a thin

splayed nematic layer. The phase diagrams plotted in Fig. 7.5, show how the anchoring

parameter Av can be used to change the boundary between these two possible regimes. The

first case resembles the model described in Ref. [5], but with an upper bound, w < ε, and

corresponds to the region below the blue line in each phase diagram. In that model, multi-

tactoid states, which increase the colloid-nematic wetting area, can be stabilized when w is

larger than a critical value dependent on the elastic and surface energy penalties, w > w∗;

this regime appears as the region above the orange line in the top two phase diagrams.

However, the addition of the upper bound w < ε restricts the size of the stable two-tactoid

region. When w∗ > ε, as is the case for the bottom phase diagram in Fig. 7.5, there is

no stably-divided region, which may explain why (meta)stable two-tactoid states are not

realized in the present simulations. In the second case, when w > ε (above the blue line), a

thin nematic layer will form, and tactoid(s) will associate with that layer on the surface of

the colloid. There is a free energetic benefit for such an association, but it is not determined

by w. Instead, the dimensionless area fraction of the thin nematic layer covered by the

tactoid, ft, is subtracted from the total nematic layer area fraction in the energy penalty

term, leading to a net energy benefit of −εft 4πa2 upon association. Thus, the possibility of

a thin splayed nematic layer sets an upper bound on the “effective adhesive wetting” felt by

the colloid, potentially eliminating the two-tactoid stable state. Though the nematic layer

appears to be a limiting factor in the minimal GB model we study here, we predict that

a model which affords control over Av will allow elimination of the thin nematic layer and

access to the stably divided regime. One simple modification to the present GB model is the

addition of another particle type that penalizes nematic-vapor interfaces with rods oriented

normal to the interface. Such a model could be adapted from work by Moreno-Razo et

al. [153].

In summary, the work in this paper shows how colloidal interactions can be used to modify
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the shape and dynamics of associating liquid crystal tactoid droplets. Our motivation for

these studies was the experimentally observed reorganization of of actin tactoidal droplets

by clusters of myosin motors in Ref. [5]. Our work identifies possible (effectively) equilibrium

mechanisms for this observed reorganization and places strong molecular constraints on the

model presented in Ref. [5]. While active forces resulting from myosin sliding actin filaments

may be crucial for the observations in Ref. [5], our studies suggest that engineering suitable

liquid crystal-colloidal interactions may also result in nematic droplet deformation.

Both biopolymeric and molecular liquid crystals are candidate materials for future ex-

perimental investigations of the deformation of nematic droplets by colloids. Passive beads,

as opposed to clusters of motors, can be functionalized to bind actin filaments in aligned

orientation [154], which under suitable conditions can nucleate tactoids [132]. Incorporating

strongly homeotropic colloids into molecular liquid crystal droplets may also show the forma-

tion of nematic defects in the droplets, and their ultimate expulsion leading to deformation

of the droplet interface. However such colloidal inclusions need to have strong affinity for

the host liquid crystal in order to be incorporated into the bulk of the droplet, while si-

multaneously ensuring that the interfacial tension of such liquid crystals is low enough to

allow for such deformation. While using the elastic distortion of liquid crystal solvents is a

standard route to colloidal self-assembly [155], we point out here the possibility of changing

droplet shape and nucleation dynamics using colloids. The resulting tunability of droplet

morphology may have possible applications in interfacial materials[156].

7.5 Appendix

7.5.1 Gay-Berne parameterization and simulation protocol

We study tactoids using molecular dynamics for two parameter sets. Readers are referred

to the literature for an introduction of the details of the Gay-Berne model [141]. In both
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parameter sets, we study uniaxial rods of aspect ratio κ = σee/σss = 3, with σee the

particle length and σss the width, in units of the fundamental length scale σ0. The exponent

parameters are set to the original parameterization used by Gay and Berne [135], µ = 2 and

ν = 1, which remains a common choice in the literature. The other anisotropic parameter

in the uniaxial GB model is the ratio of anisotropic well depths κ′ = εss/εee, with εss the

well depth for rods interacting side-to-side and εee the well depth for rods interacting end-

to-end. We choose κ′ = 1 and κ′ = 0.5 (for which εee = 2ε0 with ε0 the fundamental energy

scale) due to the easier access afforded to the nematic-vapor coexistence portion of the phase

diagram for κ′ ≤ 1 [143]. See Fig. 7.1(a) for a visualization of the GB potential for parallel

rods with our choices of parameters. The simulation time step was set to 0.002t0, with t0

the natural time scale.

Using the parameters mentioned above with κ′ = 1, and simulation periodic cube with

sides of length L = 75σ0, a single tactoid quickly forms from a vapor quenched to T = 0.55,

see Fig. 7.1(b). Specifically, the initial condition is an optional colloid and a simple cubic

lattice of fluid rods which are vaporized to temperature T = 2.55 for 105 to 5 × 105 time

steps and then quenched in steps of ∆T = −0.2 every 105 timesteps until reaching T = 0.55,

see Fig. 7.6. The director field, which measures the average local orientation of rods in the

droplet is extracted, as detailed in the Appendix, and is plotted in Fig. 7.1(c). The tactoid

displays liquid ordering, with particles diffusing throughout the droplet. In contrast, the

parameter set with κ′ = 0.5 leads to tactoids which are much more rigidly ordered and have

significantly slower diffusion of particles throughout the droplets, as well as much lower vapor

pressure.

7.5.2 Implementing a homeotropic colloid in molecular dynamics

We are interested in how a colloid with homeotropic boundary conditions interacts with tac-

toid droplets. The colloid must perform two roles, namely inducing wetting, and maintaining
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Figure 7.6: Energy time series for κ′ = 1, N = 2000, L = 75σ0 trajectories without (blue)
and with (orange) a colloid demonstrate that equilibrium is reached within a reasonable
simulation time. Initial condition is a simple cubic lattice of rods that is vaporized to a gas
at T = 2.55. The temperature is then slowly quenched over time (over the first 1000t0) until
reaching its final value of T = 0.55.

the boundary condition, or anchoring. We initially used a sphere with a strong wetting inter-

action with the fluid rods. This approach has met with success in a past study when applied

in a bulk nematic, as rod packing led to homeotropic anchoring [157]. We found that a

spherical colloid indeed interacted with a tactoid, but with very weak anchoring regardless

of the wetting strength. Further, it was clear that multiple tactoids would not be able to

nucleate on the surface of the colloid, as the first tactoid to nucleate was free to translate on

the colloid surface and absorb any other nuclei that might form. To improve the strength of

the anchoring as well as to add a barrier to translation on the surface, we turned to another

model for the colloid. In this model, we place a fixed set of GB particles upon the surface of

a sphere and orient them so that they point radially outward, see Fig. 7.1(d). We outline the

details of the procedure to create the colloid below in Appendix Section 7.5.3. Throughout

this work we use a colloid composed of 421 fixed particles whose centers of mass are located

on a sphere of radius 3.5σ0 unless otherwise noted.
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7.5.3 Finding the near-optimal spacing of points on a sphere

We implement a homeotropic colloid by constructing a fixed set of GB rods with center of

masses upon the surface of a sphere and which are oriented radially, see Fig. 7.1(c). We

first find the positions of a set of such rods by imagining them as points which we would

like to place – separated from each other as much as possible – on the surface of a sphere.

We initialize a given number of points forming the colloid, Ns, randomly placed upon the

surface of a sphere of radius Rs. We estimate the optimal spacing of particles on the surface

of the sphere using a well-known iterative approach where we imagine each particle to be an

ion interacting with each other “ion” according to a repulsive Coulomb 1/r interaction. We

take Monte Carlo steps, iteratively selecting a particle at random as well as a random move

on the surface of the sphere, and then evaluating the probability of accepting the move using

the standard Metropolis rule:

pacc(∆E) = min [1, exp (−β∆E)] , (7.5)

with β the effective inverse thermal energy, a parameter that increases through the iterative

procedure, and ∆E is the change in energy due to the proposed move, explicitly, for a move

of particle i,

∆E =

Ns∑
j 6=i

1/r
(proposed)
ij − 1/r

(old)
ij , (7.6)

with rij = |rj − ri|. After a sufficient number of Monte Carlo steps, we are left with a good

estimate of the configuration of particles that maximizes the space between each particle.

We take this set of positions as the positions of the rods which make up the colloid, and

for each particle, orient it such that it points radially outward. The result of this procedure

for a choice of Ns = 421 and Rs = 3.5 is shown in Fig. 7.1(d). To maintain its rigid form

throughout the simulation, we simply neglect to time integrate the rods which make up the

colloid. Particles in the fluid will interact with the colloid, but the colloid will not translate
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or change shape as a result.

7.5.4 Aspect ratio of GB tactoids

As shown by Ref. [145], the aspect ratio of an elongated, bipolar tactoid is expected to

decrease with the volume of the tactoid (or particle number). This is shown on dimensional

arguments and confirmed using more detailed theory [145, 158], as well as in numerous

experiments [159, 160, 161, 162, 163, 164, 165]. The intuition is that the surface energy

increases with the surface area of the tactoid, ∼ R2
i , while the elastic energy increases as the

volume of the tactoid times the squared curvature, ie. as ∼ Ri. Thus, for large tactoids, the

surface energy dominates, leading to a more spherical – smaller aspect ratio – tactoid. To

our knowledge, only one study shows tactoid aspect ratio increasing with volume, a study

of GB molecular dynamics model tactoids [4]. We confirm their result, finding that the

aspect ratio increases with the volume of the tactoid, see Fig. 7.7. This may suggest that

larger droplets with higher number of rods might be required to see agreement with the

continuum tactoid model. Because of this discrepancy, we must be cautious attempting to

map continuum theory directly to the MD results with GB particles.

7.5.5 Extraction of director field

We extract the director field from MD simulations to gain insight into the perturbation

that a colloid induces in the director field. From a time series of trajectory frames, we first

exclude any particles that are within the fixed colloid (assuming the particular trajectory

has a colloid). Next, we exclude any gas particles by using the following procedure. We

compute the adjacency matrix for the system, whose matrix elements are defined as

Aij = exp

(
−
r2
ij

2σ2

)
, (7.7)
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Figure 7.7: Measured aspect ratio for tactoids formed from rods with κ′ = 1 as a function
of particle number. This trend of tactoids formed in the GB model, first reported by [4], is
opposite of that predicted by theory and observed in experiment.

with rij = |rj − ri| and σ a parameter chosen to make sums over columns di =
∑
j Aij large

when particle i is in the tactoid droplet and small when in the gas phase (we use σ = 0.5).

This is a similar metric to coordination number. We cluster (di + c)−1 values about two

means using the standard k-means clustering algorithm, with c a small constant (here, 0.01).

Clustering with ∼ 1/di was found to give much better results than directly clustering di.

The particles in the cluster corresponding to small di values are in the gas phase, and are

excluded. Having removed the gas and (optional) colloid particles, we compute the center of

mass of the remaining particles, which make up the tactoid droplet. We set the origin to be

the center of mass, compute the inertia tensor, and rotate to the inertia tensor eigenvector

basis as the natural basis of the droplet. We divide space into discrete bins, and within these

bins compute our order parameter of interest: local density or local director field.

The director field is computed within a bin by first computing the nematic tensor order

parameter Q(r), specifically,

Qij(r) =
1

2Nb(r)

Nb(r)∑
k

3u
(k)
i (r)u

(k)
j (r)− δij , (7.8)
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where the sum runs over all particles within a bin, Nb(r), and u
(k)
i (r) is the i-component

of particle k’s orientation vector. The director n(r) is the eigenvector corresponding to the

largest eigenvalue of Q(r), and the largest eigenvalue is the magnitude of the ordering, S(r).

Fig. 7.1(b) shows a cross-section of the director field of a tactoid with N = 2000 particles

in a simulation box of size L = 75σ0. Qualitatively, it is clear that the tactoid is not homo-

geneous, as the director field tends to mimic the curvature of the nematic-vapor interface.

However, the tactoid is also not purely bipolar (compare with the schematic in Fig. 7.5(a)).

Fig. 7.1(d) shows a cross-section of the director field of a N = 2000 tactoid in a box of size

L = 75σ0 associated with a colloid at its lower tip. It can be seen that the colloid templates

homeotropic order within a local region, and that even beyond that local region, the director

field is perturbed relative to the tactoid without an associated colloid.

7.5.6 Measurement of surface tension

The surface tension is extracted using the standard pressure tensor method [166, 167, 168,

169] using a slab geometry. The slab is oriented with its normal in the z-direction, and the

important functions, namely density, the normal and tangential terms of the pressure tensor,

and the integral of their difference, are plotted in Fig. 7.8. The surface tension is one half the

value of the integral (since there are two interfaces); for κ′ = 1, we find the surface tension

is γ ∼ 0.4ε0/σ
2
0, which is within expectations from the literature [168].

7.5.7 Large tactoids partially engulf aster-like colloids

We greatly increase the number of fluid rods to study whether a large tactoid engulfs the

colloid. We are particularly interested in whether defects will appear within the director

field of the engulfing tactoid, as the avoidance of defects may cause the divided tactoid

configurations, as we discuss in Section 7.3. If the number of fluid particles is large, nucleation

will proceed as normal, but the tactoid will continue to grow in length – the tactoid width
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Figure 7.8: Surface tension measurement of κ′ = 1 nematic-vapor slab at T = 0.55 via the
pressure tensor. The surface tension is one half the value of the integral at the largest value
of z, ie. γ ∼ 0.4ε0/σ

2
0 (since there are two interfaces).

appears to be bounded by the size of the colloid. If growth continues, the tip of tactoid

eventually decouples from the colloid, and the colloid is partially engulfed by the tactoid,

see Fig. 7.9(a) which uses the slow parameter set, N = 20200 fluid rods, and box size of

L = 200σ0.

The change to a partially-engulfing tactoid can be understood by considering the interplay

of a few interactions and entropy. The interactions at play can be thought of as the favorable

wetting interaction between the fluid particles and the colloid, the colloid surface anchoring,

and the perturbation of the tactoid director field induced by the colloid. For small particle

number, tactoids associate with a colloid by binding one end to the colloid, leading to a

minimal perturbation to the tactoid director field. As the number of fluid particles increases,

the end of the tactoid eventually dissociates and it partially engulfs the colloid. In this way,

the tactoid can increase in width, reducing the nematic-vapor surface energy, and a larger

portion of the colloid can be wet by the tactoid at the cost of a high local colloid surface

anchoring energy and an increased deformation of the tactoid director field. The tactoid

gains an entropy benefit in this configuration as well, because in addition to translation on
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Figure 7.9: Large tactoids partially engulf small colloids because perturbations to the director
field are costly and are minimized by expelling the colloid to the tactoid surface. Here,
T = 0.55, κ′ = 0.5, N = 20200, and L = 200σ0. (a) A snapshot from simulation showing
a large “tactoid” partially engulfing a homeotropic colloid. Partial wetting and dissociation
of the tactoid end from the colloid is only observed when the resultant tactoid is much
larger than the colloid. The “tactoid” has a distinct crescent shape. In this snapshot, the
immobilized colloid is colored yellow, the thin, splayed nematic layer adsorbed to the colloid
is colored blue, and all other rods are colored red. (b) The director field extracted from
simulation showing partial colloid wetting. The director field is not apparently deflected
beyond the wetting layer of the colloid. Same color scheme as (a). (c) Zoom-in near the
colloid, showing the director field beyond the splayed nematic layer is only slightly perturbed.
Same color scheme as (a). All MD snapshots are visualized using Ovito [2].
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the surface of the colloid, the tactoid can now also change the position of association with

the colloid.

The director field corresponding to the partial wetting snapshot is shown in Fig. 7.9(b). If

the molecularly-thin splayed nematic layer, shown in blue, is considered a part of the fluid,

the configuration looks to contain a partial “Saturn-ring” defect after the single-molecule

splayed nematic layer [170, 44, 171], see Fig. 7.9(c) for a close-up of the director field near

the molecularly-thin layer. Traditionally, defects occur a further distance from the surface of

the colloid, for example, in Ref. [44], the defect is predicted to occur at a distance of ∼ 1.17a,

with a the colloid radius, or between 10 and 100 rod lengths from the surface of the water

droplet colloid in that work. Here, however, the colloid radius is of the same order as the rod

length. It may be the case that only one molecular layer appears since a is so much small.

7.5.8 Details of continuum simulations

The dynamical equations for the density, ψ, and the 2D nematic order parameter, Q, are

evolved in time by explicit Euler stepping on a 120 × 120 grid with periodic boundary

conditions using the pseudospectral method implemented on the numerical package XMDS

[148]. The parameters are chosen to be in the nematic-vapor coexistence region of the phase

diagram so that tactoids can nucleate, and so that the interface thicknesses are comparable

to a few gridpoints. After observing tactoid nucleation and coarsening, a large tactoid is

selected and initialized with a colloid at its center. Strong anchoring at the tactoid-colloid

interface is enforced with a high value of the parameter B4.

7.5.9 Derivation of free energy of a thin splayed nematic layer on the

surface of an adhesive colloid

The free energy contributions to the splayed nematic layer of thickness λ adhered to the

surface of a colloid of radius a, as pictured in Fig. 7.4, will be from the favorable nematic-
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Parameter Value
v2 0.5
v3 0.5
v4 2.0
B 0.5
C 5.0
D1 0.01
S1 2.0
D2 1.0
B3 0.7
τψ 1.0
τQ 10.0

Parameter small large
r0 4.0 8.0
t0 1.0 1.0
B4 5.0 20.0
W 1.0 1.0

Table 7.1: Parameters used in the continuum simulations. The first set of parameters are
for generating tactoids. The second set of parameters represent the size of the colloid and
the strength of the tactoid-colloid interactions for the two cases shown in Fig. 7.3. There,
we show the evolution of tactoid nematic field for two different colloids: a small colloid with
weak surface interaction (upper panel) to contrast with a large colloid with strong surface
interaction (lower panel). All lengths are in units of grid size, whereas energy and timescales
are in arbitrary units.

colloid wetting, the elastic cost due to a splayed nematic, the surface tension cost of the

nematic-vapor interface, and the anchoring energy cost due to the deviation of the director

field from planar at the nematic-vapor interface. Say that the thin layer covers an area

fraction of the colloid fl which has a value 0 if none of the surface is covered and 1 if the

entire surface is covered.

Proceeding term-by-term, the adhesive interaction between the colloid and the thin layer

will be

F
(w)
l = −w fl a2

∫
dS 1

= −w fl 4πa2,

(7.9)
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where the coefficient w is a parameter that controls the strength of the adhesive, or wetting,

interaction and where dS is the integral over the solid angle of the surface. The elastic cost

of a splayed nematic can be computed

F
(K)
l = K fl

∫
dS

∫ a+λ

a
dr r2 (∇ · n)2

= 4Kλfl 4π,

(7.10)

whereK is the Frank elastic constant in the one-constant approximation, and n is the director

field of the thin nematic layer, here n = r̂. The surface energy due to the nematic-vapor

interface for a sphere of radius a+ λ is simply

F
(γ)
l = γ fl (a+ λ)2

∫
dS 1

= γ fl 4π (a+ λ)2 ,

(7.11)

with γ the nematic-vapor surface tension. Finally, the nematic-vapor anchoring energy cost

is easily computed since we require that n = r̂ at the interface:

F
(Av)
l = γAv fl (a+ λ)2

∫
dS (v · n)2

= γAv fl 4π (a+ λ)2 ,

(7.12)

where v = r̂ is the surface normal.

We can write the free energy of the thin nematic layer as

Fl = F
(w)
l + F

(K)
l + F

(γ)
l + F

(Av)
l

=

[
−w +

4K

a

λ

a
+ γ (1 + Av)

(
1 +

λ

a

)2
]
fl 4πa

2

= [−w + ε] fl 4πa
2.

(7.13)

If a tactoid associates with the colloid-layer system where the entire colloid is covered by

148



the thin nematic layer, the free energy benefit of association now comes from the reduction of

the area fraction of the energy penalty εfl 4πa
2. This can be seen from a few considerations.

First, consider the schematic in Fig. 7.10, which shows that, for a thin splayed nematic layer,

relative to the curvature of the associating tactoid, the area fraction, ft, that the tactoid

occupies on the colloid surface and the area fraction the tactoid occupies on the thin splayed

nematic layer surface are equivalent. We can think of the tactoid as cutting out a cone shaped

region from the nematic layer when it associates with the colloid-layer system. Then, the

association of the tactoid will not change the area of the colloid which is wet by a nematic

(whether from the tactoid or from the thin splayed nematic layer), so the benefit from the

adhesive wetting energy −wfl 4πa2 = −w(fl − ft) 4πa2 − wft 4πa2 remains constant. On

the other hand, the energy penalty due to the wetting layer has its area fraction modified,

from its pre-tactoid value of fl to a post-tactoid value of fl − ft. Thus, the association of

a tactoid leads to an energy benefit of −εft 4πa2, making ε take the role of an “effective

wetting”.
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Figure 7.10: When the thickness of the thin splayed nematic layer, λ is small relative to
the radius of curvature of the associated tactoid, R, the curvature can be neglected and the
intersection between the tactoid and the nematic layer can be treated as a portion of a cone.
The requirement that the tactoid director lines be radial at the colloid surface, discussed
in Ref. [5], then sets the “cone tactoid” radial at both colloid and splayed nematic layer
surfaces and means that the tactoid covers an equal area fraction of both surfaces.
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CHAPTER 8

CONCLUSIONS AND OUTLOOK

In this work, we present a set of studies of soft matter systems and their interactions with

colloids of various kinds. First, we set the stage in Chapter 2 by introducing some important

concepts about ionic fluids, which are the subject of the majority of this work, discussing the

foundational Debye-Hückel and DLVO theories, introducing linear response, and detailing

some modern approaches which attempt to account for correlations in fluids with high ionic

strength. We present work done on the charge-frustrated Ising model in Chapter 3, demon-

strating that a simple, coarse-grained model can capture some of the important features of

an ionic fluid with low or high ionic strength. Next, we detail two studies of nanocrystal

colloids within molten salts and ionic liquids in Chapters 4 and 5, which together establish

the stability of these colloids and provide evidence for a stabilizing mechanism: the charge

density oscillations induced within the fluid by the colloid surfaces. Chapter 6 is concerned

with some generalizations of the charge-frustrated Ising model, and is still work in progress.

Finally, switching focus away from ionic fluids, Chapter 7 studies the interactions between

nematic liquid crystal fluids formed from rod-like particles and colloids which have a prefer-

ence for a fixed, radial alignment of rods at their surface.

Specifically, our work has helped to establish some of the minimal requirements for a

coarse-grained model of ionic fluids. The frustrated Ising model captures the DH regime as

well as the regime change to the post-DH regime where charge correlations become oscillatory.

The FI model compares well with other theoretical techniques, but is unable to reproduce

recent experimental measurements [21, 22, 23], indicating that there is still work to be

done. We extended ideas from the FI model to explain colloidal stability in molten salt

and ionic liquid solvent environments, and again, though the model was able to bring some

explanatory efficacy to bear, there were results that we were unable to explain, see Chapter 5

in particular. Our tactoid-colloid model advanced the state of knowledge about the minimal
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features required to stabilize shape changes such as splitting of nematic droplets. Thus, we

provide a possible route to droplet division at equilibrium, as well as some insights into the

possible roles of motor activity in the experimental actin-myosin system [5].

Broadly, our work has advanced understanding of soft matter colloidal systems with

potential applications to nanoscopic self-assembly and materials design. Mean field theories

and linear response have been standard techniques for many years, but we were surprised at

how applicable they were in systems where strong interactions between particles occur, such

as ionic liquids or molten salts. Mean field theory tends to be most applicable when the range

of interactions is long relative to the size or spacing of particles, since that means that on

the shorter, particle length scale, small deviations in position do not significantly change the

net force that a particle feels, and hence, local regions can be effectively coarse-grained [166].

Though electrostatic interactions are long-ranged, the damped oscillatory configurations that

result mean that small deviations in position can indeed lead to large changes in the net force

felt by a particle. Despite this apparent contradiction to standard mean field intuition, our

work has demonstrated that mean field ideas can indeed account for a significant portion

of the phenomenology of these solvent systems. Our work is thus encouraging for studies

of other soft matter systems. We also apply similarly minimal modeling tools to study how

colloids influence the shape of associated nematic tactoid droplets, and, again, demonstrate

how simple tools can provide insights into complicated soft matter systems. The long-

range nature of both of these systems yields to astonishingly simple minimal models. Our

work paints a hopeful picture that the minimal models required to describe a wide range of

complicated soft matter systems might also be fairly simple.

There are always more questions to address. Two major unanswered questions may

be related to the applicability of linear response and mean field theory. In Chapter 5,

nanocrystal-induced correlations were of longer range than bulk correlations. Perhaps along

the same lines, is the mysterious screening length scaling observed experimentally in surface
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force apparatus, and other, experiments [21, 22, 1, 23]. One difference between these two sets

of unexplained results is that the correlations induced by the colloids [26] are oscillatory, while

the interaction between plate-like surfaces appears to be monotonic [21, 22, 1]. Nonetheless,

until these results are understood, we cannot claim to fully understand the physics of colloids

and surfaces within the dense ionic fluid state. On a different subject, we would also like to

pursue the generalizations of the FI model discussed in Chapter 6. An additional interesting

possibility that might be worth studying that emerged from our study of cubic NCs is that

of kinetic trapping. Kinetically stable gel phase or superlattice structures might be created

using cubic or other highly-faceted NCs. In future work, our charge-frustrated Ising code

might be used to efficiently study the structures formed by many NCs. If we indications are

found that these phases exist, they can then be studied with more sophisticated molecular

dynamics techniques without having to canvas a large region of phase space. It would be

exciting to provide predictions as to the kinds of NCs and physical parameters which might

produce these phases, which could be used to help guide our experimental collaborators

along new exciting and productive avenues of investigation.

With regards to our studies of the colloid-tactoid system, this work has only just begun.

We have provided a prediction as to how an equilibrium colloid-nematic droplet system

might lead to stably divided droplets, but this needs to be confirmed in simulation and

in experiment. A number of past studies have documented the assembly of colloids by

nematic droplets [153, 137, 139], but now with the shape changes induced within droplets

by colloids as an additional tool, it might be interesting to explore what sort of exotic self-

assembly configurations could be achieved by combining these two research directions. Of

course, the original experimental work we were inspired by included motor activity as an

important element [5], and so it will be exciting to see how our predictions of stability relate

to microscopic models which include motor activity. Another element which we have not

considered in any great detail is the treatment of crosslinkers. In the experiments, actin
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rods are transiently bound by filamin crosslinkers, and we model this in an extremely coarse

manner with a pairwise attractive well potential. It is likely that the a more realistic picture

is significantly more complicated [172]. Finally, it is surprising that our model of rod-like

particles, with an aspect ratio at least an order of magnitude smaller than the experimental

actin rods, gave even qualitatively similar results to the experimental system. It will be

intriguing to see what changes occur with particles of a more reasonable aspect ratio.

In summary, we have applied simple, minimal theory models to complicated soft matter

systems involving the self-assembly of colloids. We have used simulation methods, molecular

and coarse-grained, to extend beyond the reach of our mean field, linear response models

and to incorporate the effects of fluctuations. Though we were able to capture a surprising

amount of the phenomenology with our minimal models, there are some aspects of the

experiments which we aspired to explain, such as long-range monotonic screening in ionic

fluids [21, 22, 23], which our models were unable to account for. Considering that more

detailed models cannot explain these aspects either, this is exciting rather than disheartening.

Our minimal models capture the same essential physics described by the state of the art in

the field – but there are hints of new, as yet unexplained physics. It is our hope that the

minimal models developed here can serve as a foundation for the next generation of models

that will be able to explain these new physics and advance human understanding.
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CHAPTER 9

APPENDIX

9.1 The Euler–Lagrange equation

9.1.1 One–dimensional case

The calculus of variations is a very powerful and wide–ranging formalism. Here, we derive a

small set of tools from that formalism which will come in handy. A more detailed derivation

can be found in Weinstock’s text [173].

The problem is to extremize the integral of a functional, defined as

F =

∫
dx f [x, y(x), ∂xy(x)] , (9.1)

with respect to variations in y(x). Another statement of the problem is to find the optimal

y∗(x) that extremizes F . To do so, we consider how variations in y(x) lead to variations in

F with the goal of writing down an expression for the functional derivative δF
δy(x)

. With the

functional derivative in hand, F is easily extremized by setting δF
δy(x)

= 0, which will lead

us to an expression for y∗(x) that extremizes F . Here, we assume that the extremum is a

minimum of F , but this condition can be confirmed by requiring that the second functional

derivative δ2F
δy(x)2

> 0.

The variation of F can be written

δF =

∫
dx δf [x, y(x), ∂xy(x)]

=

∫
dx

δf

δy(x)
δy(x) +

δf

δ (∂xy(x))
δ (∂xy(x)) .

(9.2)

A key element of the procedure occurs here in the second line where the function y(x)

and its first derivative ∂xy(x) are allowed to vary independently. To acquire the functional
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derivative, we need to perform an integration by parts to move the derivative in the second

term. Specifically,

δF =

∫
dx

δf

δy(x)
δy(x) +

δf

δ (∂xy(x))
δ (∂xy(x))

=

∫
dx

δf

δy(x)
δy(x)− ∂x

(
δf

δ (∂xy(x))

)
δy(x)

+

[
δf

δ (∂xy(x))
δy(x)

]∣∣∣∣
x
,

(9.3)

where the final term is evaluated over the end points of the integration, and can often be

neglected. Neglecting it for now, the expression for the functional derivative is

δF

δy(x)
=

δf

δy(x)
− ∂x

(
δf

δ (∂xy(x))

)
, (9.4)

which can be set to 0 to extremize the functional F : this is known as the Euler–Lagrange

equation. Solving will provide an expression for y∗(x), which can be substituted into F to

find the extremized value.

9.1.2 Three–dimensional case

In three dimensions, the Euler–Lagrange equation is evaluated much the same as in one

dimension. If the integrand functional depends only on a radial function and gradients of

that function, ie.

F =

∫
d3r f [r, y(r),∇y(r)] , (9.5)

then the resulting expression for the functional derivative, neglecting the surface term, is

simply

δF

δy(r)
=

δf

δy(r)
−∇ ·

(
δf

δ (∇y(r))

)
. (9.6)

156



9.2 Fourier transformation conventions

The d–dimensional Fourier transform of a function f(r) is

f̃(k) ≡ F{f(r)}(k) =

∫
Rd

ddr exp (−ik · r) f(r), (9.7)

with inverse

F−1{f̃(k)}(r) =

∫
Rd

ddk

(2π)d
exp (ik · r) f̃(k). (9.8)

In three–dimensions, when f(r) depends on only r (and not the vector–valued r), the Fourier

transform reduces to

f̃(k) = F{f(r)}(k) =
4π

k

∫ ∞
0

dr r sin (kr) f(r), (9.9)

and

F−1{f̃(k)}(r) =
4π

r

∫ ∞
0

dk

(2π)3
k sin (kr) f̃(k). (9.10)
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9.3 Inverse Fourier transformation of a k4 order parameter

correlation function

In this section we lay out the contour integrals required to inverse Fourier transform the

Fourier form of order parameter correlation function, φ̃(k) to find the order parameter density

φ(r). Consider an order parameter φ(r) for which we know the inverse order parameter

correlation function has the form

φ̃(k) =
2αk2

k4 + 2αk2 + β
, (9.11)

where α and β are constants with units length−2 and length−4 respectively. In particular,

two cases will be considered since the poles have two regimes of interest. After finding the

poles in these two cases, we walk through the integrals which lead to the final results,

φ(r) = 2α
1

4πr

[
κ2 exp (−κr)− (κ∗)4

κ2
exp

(
−(κ∗)2

κ
r

)]/[
κ2 − (κ∗)4

κ2

]
r�κ/(κ∗)2
−−−−−−−→ 2α

1− (κ∗/κ)4

1

4πr
exp (−κr) ,

(9.12)

for α >
√
β (the “high temperature” case), and

φ(r) = − 2α√
1− α2/β

1

4πr
exp (−κr) sin (ωr + θ) , (9.13)

for−
√
β < α <

√
β (the “low temperature” case). Constants are defined in the next sections,

specifically, κ∗ in Eq. 9.18, κ and ω in Eq. 9.19, and the phase factor θ in Eq. 9.33. There

is another regime for α < −
√
β which has a truly long–ranged ordering (ie. no exponential

decay), but we won’t explore this regime.

For the case of a one-dimensional order parameter, say due to a infinite plate-like bound-
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ary condition, the high temperature Eq. 9.12 becomes

φ(z) =
α

4κ
(
1− (κ∗/κ)4

) exp (−κz) , (9.14)

and the low temperature Eq. 9.13 becomes

φ(z) =
α

4κ∗
√

1− α2/β
exp (−κz) cos (ωz + θ/2) . (9.15)

9.3.1 Poles for k4 order parameter correlation function

The poles determine the contour integrals. The poles of φ̃(k) are found by solving the

fourth–order equation

0 = k4 + 2αk2 + β, (9.16)

which leads to the four solutions

kηλ = η
√
α

√
−1 + λ

√
1− β/α2, (9.17)

where η, λ ∈ {±1}.

The poles have different behavior in three different regimes, and we walk through two

of those three. The first regime is for α2 > β, which we refer to sometimes as the “high

temperature” regime (since α = α(T ) in the models we consider in this work). In the high

temperature regime, the inner root is positive. When the inner square root becomes negative,

the behavior of the poles upon variation of the parameters changes qualitatively, and this

is the second, “low temperature” regime: α2 < β. Before discussing the high temperature

regime, let’s define a constant

κ∗ = β1/4, (9.18)
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which, physically, is the inverse of the shortest decay length the system will achieve, and let

κ = R
(
k++)

ω = I
(
k++) . (9.19)

Poles in the “high temperature” regime

Letting α >
√
β, the expression for the poles, Eq.9.17 can be specialized,

kηλ = i η
√
α

√
1− λ

√
1− β/α2, (9.20)

with the argument of the root now known to be ≥ 0. Then the roots are known to be purely

imaginary, ie. ω = 0. Further, k++ and k+− are in the upper half plane, with

k++ < k+−,

k++ = −k−+,

k+− = −k−−,

(9.21)

which will allow for significant simplifications. Finally,

(κ∗)4 =
(
k++)2 (k+−)2 , (9.22)

which allows the rewriting of I
(
k+−) = (κ∗)2 /κ. Note also that

κ
α�
√
β−−−−−→ 0, (9.23)

which, with α varying as temperature means that, in the high temperature regime, the length

scale 1/κ increases with temperature. Next, we outline the structure of the poles in the low

temperature regime, which have some significant differences to the high temperature case
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including an opposite dependence of 1/κ on temperature.

Poles in the “low temperature” regime

Now, let 0 < α2 < β. The inner root becomes imaginary–valued, and it becomes convenient

to write the argument of the square root in the expression for the poles, Eq. 9.17,

−1 + iλ
√
β/α2 − 1 =

√
β/α2 exp

[
i arctan

(
−λ
√
β/α2 − 1

)]
, (9.24)

which can be simplified, leading to an expression for the poles in this regime:

kηλ = κ∗η

√1

2

√
β − α√
β

+ i λ

√
1

2

√
β + α√
β

 . (9.25)

In the low temperature regime, the relationships between poles are different. Specifically,

R
(
k++) = R

(
k+−)

= −R
(
k−+)

= −R
(
k−−

)
,

I
(
k++) = I

(
k−−

)
= −I

(
k+−)

= −I
(
k−+) ,

(9.26)

where R(x) and I(x) are the real and imaginary parts of x, respectively. Note also that

(κ∗)2 = κ2 + ω2. (9.27)

For the low temperature case, then, the length scale 1/κ = 1/I
(
k++

)
∼ α−1/2 decreases

with the root of temperature. Then the direction of change with temperature is opposite that
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of the high temperature regime, for which an increase in temperature increases the length

scale 1/κ. These are all the relations we need, so let us proceed to the contour integrals.

9.3.2 Computing the inverse Fourier transform contour integrals

The residue theorem gives us a way to compute integrals over contours in the complex plane,

∮
C

dz
f(z)

(z − a)n+1
=

2πi

n!
f (n)(a), (9.28)

where the integral is over a closed contour, C, which contains a pole at a of order n+ 1, and

f (n)(a) is the n–the derivative of f(z), which is then evaluated at the pole a. Here, we wish

to compute a Fourier integral

φ(r) =
4π

r

∫ ∞
0

dk

(2π)3
k sin(kr)

2αk2

k4 + 2αk2 + β

=
α

(2π)2 i r

∫ ∞
−∞

dk k3
(
eikr − e−ikr

) 4∏
j

(
k − kj

)−1

,

(9.29)

with the kj ’s each a pole, and where in the second line, use has been made of the evenness

of the integrand and the sin has been rewritten in exponential form. This integral can

be computed by creating a contour that extends from [−R,R) on the real axis and then

follows a semicircular contour of radius R in the upper/lower half plane for the first/second

exponential term respectively. Taking the limit R → ∞ will send the values of the values

of the integrals over the semicircle portion to identically 0, leaving the integral over the real

line equal to the residues of the poles. Here, the result for the upper and lower half plane

are identical, and so we only consider the integral over the upper half plane, accounting for

the lower half plane by multiplying the result by 2.
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Then,

φ(r) =
4α

4πr

 2∑
l

(kl)
3 eiklr

 4∏
j 6=l

(
kl − kj

)−1
 , (9.30)

where l runs over the poles in the upper half plane.

High temperature integral

For the high temperature regime, the two poles in the upper half plane are k++ and k+−

and so the product in the denominator of Eq. 9.30 can be written, for evaluation about the

k++ pole, and using the identities Eq. 9.21

4∏
j 6=++

(
k++ − kj

)
= 2k++

[(
k++)2 − (k+−)2]

= 4k++
√

1− β/α2,

(9.31)

where in the second line the expressions for the high temperature poles, Eq. 9.20 has been

used. Evaluating the corresponding product for the pole k+− yields the same result with a

minus sign, since the factor which was originally k++ − k+− switches sign. Plugging values

into the result from the residue integration, Eq. 9.30, the order parameter correlation density

is found to be Eq. 9.20 as promised (also using Eq. 9.22).

Low temperature integral

The poles in upper half plane for the low temperature regime are k++ and k−−. The k++

term denominator product can be found using the low temperature pole relations Eq. 9.26

and is found to be
4∏

j 6=++

(
k++ − kj

)
= 8 i κ ω k++. (9.32)
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Again, the product for the other pole, k−−, is simply −1 times the product Eq. 9.32. After

some algebra, the final result, Eq. 9.25, is found, with

θ = − arctan

(√
β/α2 − 1

)
(9.33)

the phase factor.
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Bukusoglu, Nicholas L. Abbott, and Juan J. de Pablo. Nanoparticle self-assembly
at the interface of liquid crystal droplets. Proceedings of the National Academy of
Sciences, 112(17):5297–5302, 2015.

[140] Kabir Husain and Madan Rao. Emergent structures in an active polar fluid: Dynamics
of shape, scattering, and merger. Physical review letters, 118(7):078104, 2017.

[141] W. Michael Brown, Matt K. Petersen, Steven J. Plimpton, and Gary S. Grest. Liquid
crystal nanodroplets in solution. The Journal of Chemical Physics, 130(4):044901,
2009.
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