
Supplementary Methods 

I. Chemicals and materials.

Inorganic salts: LiCl (ultra dry, 99.9%, metal basis, Alfa Aesar), LiBr (99+%, anhydrous, Strem),

LiI (ultra-dry, 99.999%, metal basis, Alfa Aesar), NaCl (puratronic, 99.999%, metal basis, Alfa Aesar), 

KCl (99.999%, trace metal basis, Aldrich), KBr (FTIR grade, Alfa Aesar), KI (ultra dry, 99.998%, Alfa 

Aesar), CsBr (99.999%, metal basis, Alfa Aesar), ZnCl2 (anhydrous powder, 99.995+%, metal basis, 

Aldrich), AlCl3 (99.99%, trace metal basis, Aldrich), AlBr3 (extra pure, 98+%, anhydrous, ACROS), 

NaSCN (≥99.99%, trace metal basis, Aldrich), KSCN (ACS reagent, ≥99.0%, Aldrich), LiNO3 

(anhydrous, 99%, Alfa Aesar), NaNO3 (ACS, 99% min, Alfa Aesar), NaNO2 (99.999%, metal basis, 

Alfa Aesar), KNO3 (ReagentPlus, ≥99.0%, Aldrich), CsNO3 (99.8%, metal basis, Alfa Aesar), 

Ca(NO3)2∙4H2O (≥99.0%, Aldrich). AlCl3 was purified by sublimation in a N2-filled glove box (sub-1 

ppm O2 and H2O) prior to use. NaSCN and KSCN were dried under vacuum according to reported 

protocols1. Anhydrous Ca(NO3)2 was obtained by the dehydration of Ca(NO3)2∙4H2O2. Other nitrates 

and NaNO2 were dried in a vacuum oven at about 150 °C prior to use2,3. The eutectic nitrate or 

nitrate/nitrite salts can also be prepared in the way described by Cordaro et al.4. Cautious: Most of the 

salts used in this work are highly hygroscopic and should be kept and handled in a N2-filled glovebox. 

Molten inorganic salts with various compositions (Extended Data Table 1) were prepared by hand-

grinding, followed by heating at temperatures slightly above the melting points of the molten mixtures.  

Ionic liquids (ILs): 1-butyl-3-methylimidazolium chloride ([BMIM]+Cl–, 98%), 1-butyl-3-

methylimidazolium tetrafluoroborate ([BMIM]+BF4
–, 98%), 1-ethyl-3-methylimidazolium ethylsulfate 

([EMIM]+[EtSO4]–, 98%), 1-butyl-3-methylimidazolium octylsulfate ([BMIM]+[OctSO4]–, 98%), 

trihexyl(tetradecyl)phosphonium bis(2,4,4-trimethylpentyl)phosphinate (P+P–, min. 95%) were 

purchased from Strem. 1-butyl-3-methyl iodide ([BMIM]+I–, 99%) was purchased from Aldrich. All 

ILs were stored under an inert atmosphere and baked at 80 °C under vacuum for 24 h prior to use.  

Metal alloys: Gallium–Indium eutectic (Ga–In, Ga0.755In0.245 (weight ratio), melting point ~ 15 °C, 

99.99%, trace metal basis, Aldrich), Wood’s alloy (Bi0.5Pb0.267Sn0.133Cd0.1 (weight ratio), melting point 

~ 70 °C, stick, Aldrich) were used as received.  
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Organic solvents and organic ligands: Tri-n-octylphosphine oxide (TOPO, 99%), oleic acid (OA, 

90%), oleylamine (OLA, 70%), N,N-dimethylformamide (DMF, anhydrous, 99.8%), toluene 

(anhydrous, ≥99.8%), acetonitrile (anhydrous, ≥99.8%), acetone (≥99.5%), methanol (anhydrous, 

99.8%), ethanol (anhydrous, 200 proof, ≥99.5%), diethyl ether (anhydrous, ≥99.0%), tetrahydrofuran 

(THF, anhydrous, ≥99.9%), hexane (anhydrous, 95%), octane (anhydrous, ≥99%), decane (anhydrous, 

≥99%), heptadecane (99%), dichloromethane (CH2Cl2, ≥99.9%) were purchased from Sigma Aldrich. 

Tri-n-octylphosphine (TOP, 97%) and N-methylformamide (NMF, 99%) were purchased from Alfa 

Aesar. OA, OLA, heptadecane, and NMF were dried prior to use in the glovebox. 

II. Syntheses of nanocrystals capped by coordinating organic ligands.

Nanocrystal (NC) syntheses were performed according to reported protocols using conventional

air-free techniques including Schlenk line and N2-filled glovebox. Pt NCs (mean size about 5.5 nm)5, 

Pd NCs (4.0 nm)6, FePt NCs (3.5 nm)7, Fe3O4 NCs (about 20 nm)8, InP NCs (3.5 nm)9,10, CdSe NCs 

(wurtzite, 4 nm)11, and alpha-NaYF4:Yb,Er@CaF2 upconverting nanoparticles (UCNPs, about 23 nm)12 

were synthesized. CdSe/CdZnS core/shell quantum dots (QDs, about 6 nm, capped with phosphonic 

acid or carboxylic acid ligands) were provided by QD Vision, Inc. 
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Supplementary Discussions 

I. Continuum theory for interacting surfaces in molten salts.

In this section we introduce a phenomenological theory to explain the colloidal stability observed in

suspensions of various nanocrystals in inorganic molten salts. We use this phenomenological theory to 

predict and rationalize the layering seen in simulations purely in terms of physical interactions 

ubiquitous in both inorganic molten salts and organic room temperature ionic liquids: short-range steric 

(present in all liquids13) and long-range electrostatic (Coulomb) interactions between ions. Such a 

phenomenological theory has been used successfully to describe experimentally observed capacitive 

transitions at electrode-room temperature ionic liquid interfaces14,15. But to our knowledge, this is the 

first instance of its application to colloidal interactions in inorganic molten salts. 

In the traditional Derjaguin–Landau–Verwey–Overbeek (DLVO) theory of interactions between 

colloidal particles, double-layer or electrostatic forces lead to a repulsion between charged surfaces in a 

solution16. Due to the high density of ions in a molten salt, the electrostatic forces between charged 

surfaces are expected to be screened out over very short distances 15. The colloidal particles are 

therefore expected to aggregate because of attractive van der Waals or solute-mediated interactions. 

Fluctuation mediated critical Casimir-like forces between surfaces are also usually attractive (and 

strongly sensitive to temperature)17. 

Here we show that colloidal stabilization in molten salts can be explained by interactions not 

accounted within DLVO theory. We consider a scenario where surface-induced ordering or layering in 

the molten salt18,19 contributes to the colloidal stability, as observed both in experiments and 

simulations. Such layering is expected to be pronounced and extend a long distance into the bulk if the 

salt is reasonably close to its crystallization temperature. In addition to surface-induced layering, 

interionic correlations can extend the effective screening length in highly concentrated electrolytes,20-22 

which may also contribute to colloidal stabilization in molten inorganic salts. In the following, we 

present our calculation for the free energy of interaction between two planar, infinite surfaces in an 

inorganic molten salt from a continuum Ginzburg-Landau theory perspective, taking into account both 

the short-range steric and long-range electrostatic interactions23. We first derive the oscillatory 

interaction energy (per unit area) between a pair of symmetric, parallel surfaces. We then show that a 

relative tilt between the two surfaces can lead to a repulsive free energy profile superimposed on the 

oscillatory profile. Such a tilt is important to account for faceting, curvature, and also surface roughness 

on real nanocrystal (NC) surfaces. The effects of curvature, faceting and roughness are expected to 

frustrate the layering and attenuate the oscillations in free energy. But it still maintains large repulsive 
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barriers between two approaching NCs, as shown in our simulations. Finally, the force between two 

plane surfaces can be generalized to that between two finite, spherical colloidal particles by using the 

Derjaguin approximation. It is important to note that this theory is general for investigating the 

interactions between particles in a solvent composed solely of ions, including colloidal NCs in 

inorganic molten salts. As an example, we choose CdSe NCs in molten KCl and analyze their 

interactions using this theory.  

1. Approximate continuum Hamiltonian for density ordering.

The layering of ions normal to a flat nanocrystal (NC) surface (yz-plane) can be described using a

Ginzburg-Landau model for the free energy above the critical temperature. The bulk free energy of the 

system (per unit area) including the effect of long-range interactions in the solvent is24, 

𝐹[𝜓(𝑥)] = ∫ 𝑑𝑥 [𝐵(∇𝜓(𝑥))
2

+ 𝑏𝜓2(𝑥) +  𝜓(𝑥) ⋅ ∫ 𝑑𝑥′𝑉(𝑥 − 𝑥′)𝜓(𝑥′)]   (1)

In Eq. (1), ψ(x) is the local charge density of the solvent expressed as the difference in number 

density of cations and anions normalized by the total number density of salt ions, ns: 𝜓(𝑥) ≡ (𝑛+(𝑥) −

𝑛−(𝑥))/𝑛𝑠. B & b are phenomenological parameters in the theory corresponding to short-range

interactions and entropy. 𝑉(𝑥 − 𝑥′) = (𝑒2𝑛𝑠
2/𝜖𝜖0) |𝑥 − 𝑥′|  is the long-range effective Coulomb

interaction between ions in the solvent at positions, x and 𝑥′ (the problem is effectively one-

dimensional as the density profile varies in the x-direction alone for infinite surfaces in the yz-plane), 

where e is the unit charge (on each monovalent ion), ε0 and ε are the permittivity of free space and the 

relative permittivity of the solvent medium (KCl in this case). The free energy F[ψ(x)] in Eq. (1) is the 

effective one-dimensional Hamiltonian for describing the molten salt. We ignore the ψ(x)4 and higher 

order terms because the molten salt (KCl) is above its bulk melting temperature and is a disordered 

liquid far from the colloidal interface. The effect of long-range interactions is simplified in Fourier-

space. By expanding around the wave-vector, q0, at which the free energy is minimized, the free energy 

of Eq. (1) can be approximated as,  

𝐹[𝜓(𝑥)] ≃ |𝑏|𝑙𝑐
2

8𝑞0
2 ∫ 𝑑𝑥 [((∇2 + 𝑞0

2)𝜓(𝑥))
2

+ 4𝑞0
2𝑙𝑐

−2𝜓2(𝑥)] (2) 

where q0 is the preferred wavenumber of layering and 𝑙𝑐, the decay length of the layering, is related 

to the Ginzburg-Landau correlation length (√𝐵/|𝑏|). The preferred wavenumber of layering is given 

by15, q0 = (1/ lc ls )1/2, where lc can be of order of several nanometers (nm), and ls is the Debye screening 

length (within the Debye-Hückel theory applicable to dilute electrolytes), which is around 0.1 nm 

(comparable to ionic radius) in inorganic molten salts. The wavelength of ordering can then be a few  
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angstroms which is about one ionic layer thick as expected. The solvent can thus exhibit layering up to 

a long length-scale (much longer than the classical Debye screening length) as a result of the 

competition between steric and Coulomb interactions. Indeed, estimates of the screening length 

obtained by analyzing the poles of the structure factor are much larger than the Debye length (even in 

the Gaussian approximation used here). 

Such an effective Hamiltonian has been used to describe a variety of materials whose ordering is 

governed by a competition between short- and long-range interactions24 – for example, magnetic films, 

diblock copolymers, Langmuir monolayers, and more recently, ionic liquids14,15,25 – and the 

corresponding phase diagram has been extensively studied and characterized23,26. This is richer than 

that for a simple liquid: as the temperature is lowered towards the bulk ordering temperature, the liquid 

can go from being disordered to an intermediate regime characterized by local structural order before 

long-range crystalline order is established. In Eq. (2), we consider the molten salt to be above its 

ordering temperature, so that while the bulk is disordered, a nanocrystal surface can template local 

order in its vicinity24,27. 

An Euler-Lagrange minimization of this Hamiltonian in the bulk results in a fourth-order linear 

differential equation that can be solved analytically, 
𝑑4𝜓
𝑑𝑥4 + 2𝑞0

2 𝑑2𝜓
𝑑𝑥2 + 𝑞0

2. (𝑞0
2 + 4𝑙𝑐

−2)𝜓(𝑥) =0        (3)

With the appropriate surface boundary condition (determined by the chemical interaction of the surface 

with ions) and charge neutrality conditions, one can solve the charge density profile, ψ(x). An 

approximate solution for ψ(x) induced by one surface that satisfies a simple boundary condition that a 

fixed number of anions bind to the surface, 𝜓(0) = 𝜓0, and global charge neutrality, is given by

𝜓(𝑥) =  𝜓0 sec(𝜙) 𝑒−𝑥/𝑙𝑐cos (𝑞0𝑥 + 𝜙)  (4)

where 𝜓0 is the ion density at the surface fixed by the strong surface-binding affinity. The phase,  

𝜙 = tan−1( 1/(𝑞0𝑙𝑐)), ensures charge neutrality in the bulk of the solvent. This form of the charge

density arises since the NC (e.g., Cd-terminated CdSe NCs) surface has a strong preference for one 

type of ions (i.e., Cl−) in the melt, which in turn leads to successive alternating layers of cations and 

anions (with wavenumber 𝑞0) decaying with distance from the surface (with a range of 𝑙𝑐).  

2. Density order and free energy in two-surface geometry.

Having solved the charge density ordering near one surface, we now solve for the corresponding

order between two surfaces. This can be used to calculate a free energy profile for the interaction  

WWW.NATURE.COM/ NATURE | 5

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature



between two NC surfaces as a function of their distance of separation. Colloidal stability may result 

from large barriers (compared to kBT) in this free energy landscape. 

1) Parallel surfaces. The Euler-Lagrange differential equation, Eq. (3) corresponds to the approximate

model Hamiltonian that describes the competition between short- and long-range interactions (Eq. (2)). 

It is analytically solvable and can be generalized easily to the case where there are two symmetric 

surfaces in parallel (located at x = L and x = −L) that induce order as, 

 𝜓∥(𝑥) =  𝜓1𝑐𝑜𝑠(𝑞0𝑥)𝑐𝑜𝑠ℎ (𝑥
𝑙𝑐

) +  𝜓2𝑠𝑖𝑛(𝑞0𝑥)𝑠𝑖𝑛ℎ (𝑥
𝑙𝑐

) (5) 

where the solution is symmetric about the mid-plane (x = 0) by construction and the two constants 𝜓1

and 𝜓2 are to be determined from two conditions: the surface boundary value and charge neutrality. 

Fig. S1. Theoretical analysis of two symmetric parallel surfaces. (A) Free energy of interaction per 

unit area of two parallel plane surfaces (expressed as a ratio of the phenomenological energy scale 

(𝐹0 ∼ 𝑏𝑙𝑐𝜓0
2) as a function of the distance of separation (D) between them, expressed in units of the

correlation length lc (around 1 nm). The wavenumber of layering, q0 = (1/ lc ls )1/2 is estimated to be 10 

nm−1, (wavelength of layering in KCl ~ 6 Å). An estimation of the energy scale for 𝐹0 is available on

Page S11 and from the simulation result (Fig. S8A). Charge density profiles, ψ(x), corresponding to a 

free energy (B) maximum and (C) minimum. This illustrates that configurations where an integer 

number of layers can be fit in between two surfaces are energetically favorable. 
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The charge neutral symmetric solution in Eq. (5) can be reduced to the simplified, intuitive form 

when the separation between the surfaces, D = 2L , is large, 

𝜓∥(𝑥) =  𝜓0[exp [− 𝐿−𝑥
𝑙𝑐

] cos(𝑞0(𝐿 − 𝑥) + 𝜙) + exp [− 𝐿+𝑥
𝑙𝑐

] cos(𝑞0(𝐿 + 𝑥) + 𝜙) ] (6) 

where the pre-factor, 𝜓0, is determined from the surface boundary condition. This solution is simply 

interpreted as the superposition of two single-surface solutions originating from x = L and x = −L 

respectively with equal weight (since the surfaces are identical). We use this simpler expression to plot 

the symmetric density profile in Fig. S1, and calculate the total free energy by inserting the expression 

in Eq. (6) into Eq. (1), 

𝐹∥(𝐷) ≃ − (1
2
) 𝑏𝑙𝑐𝜓0

2 ⋅ 𝑒−𝐷
𝑙𝑐cos (𝑞0𝐷 + 𝜙) (7) 

2) Tilted surfaces.

Our simulations show that there is an exponentially decaying repulsive component over and above

the oscillatory features in the free energy, particularly apparent in the 20° tilted plates (Figs. 3e &S8B). 

This is related to the large energy cost of removing the last few remaining ionic layers as the two NC 

surfaces approach very close to each other28. A qualitative way of understanding this repulsion in terms 

of the phenomenological theory is presented here. 

An obvious effect of tilting one surface with respect to the other is that the separation between the 

two plates is different at different positions, leading to an averaging out of the oscillatory interactions 

to some extent. By integrating Eq. (7) over the range of separation: 𝐷𝑚𝑎𝑥 − 𝐷𝑚𝑖𝑛 = 𝑙𝑝𝑠𝑖𝑛𝜃, where 𝑙𝑝 is 

the size of the plate (corresponding to the size of the NC facet) and 𝜃 is the angle of tilt, one can obtain 

the factor by which the oscillations are attenuated: for large facet areas and/or large angles of tilt, the 

oscillations are averaged out to a large extent and an approximate form for the attenuation factor is 𝜂 ∼

𝑞0𝑙𝑝𝑠𝑖𝑛𝜃, whereas for small plates tilted at small angles, i.e., in the limit 𝑙𝑝𝑠𝑖𝑛𝜃 ≪ 𝑙𝑐, the attenuation 

factor scales as 𝜂 ∼ 1 + 𝑙𝑝𝑠𝑖𝑛𝜃/𝑙𝑐. We indeed see an attenuation in the free energy oscillations in the 

simulation results for plates tilted at larger angles (Fig. S8B). However, for NCs of small size, such as 

used in this experiment, and strong surface-induced layering (i.e., high energy peaks), the attenuation is 

not strong enough to completely wash out these oscillatory features (Fig. S8B). 

When one of the order-inducing surfaces is tilted with respect to the other, the order is induced 

along different axes (See cartoon in Fig. S2A). This can be analyzed as an effective one-dimensional 

problem by considering variations of the charge density along the x-axis, assuming the two surfaces 

induce different effective layering wavenumbers, ql and qr, respectively, where 𝑞𝑙 = 𝑞𝑟 𝑐𝑜𝑠𝜃. The 
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S9 

density profile can be approximately calculated by superposing the one-surface solutions from the left 

and the right, 

𝜓𝑡𝑖𝑙𝑡(𝑥) =  𝜓0[exp [− 𝐿−𝑥
𝑙𝑐

] cos(𝑞𝑟(𝐿 − 𝑥) + 𝜙𝑟) + exp [− 𝐿+𝑥
𝑙𝑐

] cos(𝑞𝑙(𝐿 + 𝑥) + 𝜙𝑙)] (8) 

where the asymmetry between the surfaces leads to different preferred wavelength of order induced by 

left and right surfaces. We expect this Ansatz to be more accurate when the plate separation, D = 2L, is 

significantly larger than the correlation length, lc. 

Putting the Ansatz for density profile, Eq. (8), into Eq. (2), we calculate numerically the free energy 

of interaction of two surfaces as a function of their separation, F(D), for different degrees of tilt as 

shown in Fig. S2.  

Fig. S2. Theoretical analysis of two tilted surfaces. (A) Layering induced by a pair of surfaces tilted 

relative to each other (θ) such that the order from each surface is characterized by two different 

wavenumbers along the x-axis, ql and qr, respectively. (B,C) The effect of the frustration in layering 

induced by the tilt on the oscillatory-repulsive interactions. The wavenumbers on the left and right, ql

and qr, are (B) 10 and 12 nm−1 (slight tilt), and (C). 10 and 14 nm−1 (stronger tilt), respectively. (A 
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wavenumber of 10 nm−1 corresponds roughly to layering in KCl.) All lengths in the plots are in terms of 

the correlation length, lc = 1 nm, and the energy scale is 𝐹0 ∼ 𝑏𝑙𝑐𝜓0
2, the same as in the case of parallel

surfaces. The corresponding charge density profiles, ψ(x), at a plate separation given by L = 2, for (D) 

the small angle tilted and (E) large angle tilted cases, respectively.  

The relative tilt between the ordering from the right and left surfaces (Fig. S2A) is reminiscent of a 

grain boundary in a crystalline ordered phase. The creation of a grain boundary, which is a defect in the 

ordering, requires a positive free energy cost. The energy cost increases with the tilt angle29 as has been 

shown in the context of defects in lamellar ordering in block copolymers30. The two surfaces would 

therefore tend to move away from each other to reduce this free energy cost (which scales as square of 

the amplitude of order parameter), therefore resulting in an effective repulsion. We expect this 

repulsive free energy cost to scale as, 𝐹𝑡𝑖𝑙𝑡(𝐷, 𝜃) ∼ 𝐹0𝑒−𝐷
𝑙𝑐(𝑙𝑐𝑞0)−1𝜃2.

To summarize, the interaction between two parallel flat surfaces is a decaying and oscillatory 

function of their distance of separation (D), being minimized at the special separations where 

commensurate layering can occur, i.e., an integer number of ionic layers can fit in between the two 

plates. On top of this, there are repulsive interactions between two tilted plates which is an effective 

function of the angle of tilt (θ). The total free energy of interaction between two mutually tilted flat 

surfaces, for a small angle of tilt, can then be captured by the following semi-empirical expression 

where the effect of the tilt is taken into account 

𝐹(𝐷, 𝜃) = 𝐹∥(𝐷) + 𝐹𝑡𝑖𝑙𝑡(𝐷, 𝜃) ∼ 𝐹0𝑒−𝐷/𝑙𝑐(cos(𝑞0𝐷) + 𝑓(𝜃)), (9) 

where 𝑓(𝜃) ∼ (𝑞0𝑙𝑐)−1𝜃2 is the tilt-dependent repulsive part (square of angle of tilt for small angles 

since the direction of tilt is unimportant).  

3) Curved surfaces.

Given the detailed results for interactions of flat surfaces (parallel or tilted) from both continuum 

theory and atomistic simulations, we now generalize them to spherical NCs. The approximation 

developed by Derjaguin is commonly used to calculate the force of interaction between curved 

surfaces28, given a theoretical expression for free energy of interaction between flat surfaces. We 

outline this procedure in its most standard form and then adapt it to the free energy for the oscillatory 

tilt-dependent interactions in molten salts. The interaction between two identical spheres (of radius R)  
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separated by a distance D is calculated by integrating over ring-like circular surface elements of 

thickness dr and area 2πrdr. The relevant geometry is sketched in Fig. S3A. The distance between rings 

at position r is given by, z(r) = D+2R(1−cos(θ)) ∼ D+r2/R. When D < R, the effective interaction 

between the spheres can then be written as, 

𝑉𝑒(𝐷) = 2 𝜋 ∫ 𝐹(𝑧)𝑟𝑑𝑟 = 𝜋𝑅 ∫  𝐹(𝑧)𝑑𝑧∞
𝐷

∞
0  (10) 

where F(z) is the interaction energy of a circular surface element with the opposite surface, assumed to 

be locally flat. The above analysis can be applied directly to the interaction between parallel surfaces. 

With necessary integrals, we get, 

𝑉∥(𝐷) = 𝜋𝑅 ∫ 𝐹∥(𝑧)𝑑𝑧 = 𝜋𝑅𝐹0

(𝑞0
2+𝑙𝑐

−2)1/2  𝑒−𝐷/𝑙𝑐∞
𝐷  cos (𝑞0𝐷) (11) 

which for rapidly oscillatory interactions, 𝑞0 ≫ 𝑙𝑐
−1, simplifies to: 𝑉∥(𝐷) ≃ 𝜋𝑅𝑞0

−1𝐹∥(𝐷).

The above form of the approximation is appropriate for the typical layering/solvent structuring 

interactions between colloids. However, DLVO forces, electrostatic or van der Waals, depend only on 

the distance of separation of the surfaces and their area. To compare the layering force with the DLVO 

forces, we have to modify this procedure to effectively account for the tilt. We integrate over the same 

circular surface elements shown in Fig. S3A, bearing in mind that the average angle of tilt in each 

circle is θ, being related to the distance of separation as, z(θ) = D + 2R (1−cos2 θ) D + Rθ2, for small 

angles. The total interaction energy is then found by performing the integral of Ftilt introduced in Eq. 

(9) over these surface elements as,

𝑉𝑡𝑖𝑙𝑡(𝐷) = 2𝜋𝐹0 ∫ 𝑒−𝑧/𝑙𝑐 𝜃2 𝑟 𝑑𝑟 ≃ 𝜋𝑙𝑐
2𝐹0𝑒−𝐷/𝑙𝑐∞

0 (12) 

The contribution to the free energy of interaction from the tilt, scales differently (and with a lower 

power) with R than the interaction between parallel surfaces. The physical meaning of this is apparent 

when we write the total effective energy of interaction between spherical surfaces by combining Eq. 

(11) and (12), as:

𝑉𝑒(𝐷) ≃ 𝜋𝑅𝑙𝑐 𝐹0𝑒−𝐷/𝑙𝑐(cos (q0𝐷)  + 𝑙𝑐/𝑅) (13) 

Eq. (13) shows that the oscillatory (and symmetric) interactions between parallel surfaces become 

more pronounced as R is increased, i.e., the surfaces approach the flat limit, while the repulsive 

component increases when R is small, as now the surface elements sample greater tilt angles. This R-

dependence is as per our physical expectations and is illustrated in Fig. S3B. Note the free energy (in 

kBT) in Fig. S3B was estimated from the free energy per unit area, F0, as described below. We also 

compare the typical DLVO forces (See more details in the estimation of DLVO forces in the Appendix) 
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with the layering interactions for a typical spherical particle (4 nm diameter) used in experiment in Fig. 

S3C. The dependence of the colloidal interactions on the size of the colloidal nanoparticles suggested 

in Eq. (13) would be interesting to probe in subsequent experiments. Particularly, kinetic trapping by 

large oscillatory barriers may become increasingly relevant for larger colloidal particles where the 

repulsive component becomes relatively smaller. 

A

B

D (nm)

F 
(k

BT
)

C

D (nm)

F 
(k

BT
)

Fig. S3. Theoretical analysis of two curved surfaces. (A) Relevant geometry for Derjaguin 

approximation. (B) Free energy of layering as a function of the distance of separation (D) between two 

spherical particles, calculated from the simplified expression given in Eq. (13) for parameter values in 

the free energy scale, 𝐹0 ∼ 𝑏𝑙𝑐𝜓0
2, estimated from simulation (Fig. S8A) to be about 20 kBT/nm2. This

illustrates that the repulsive interactions become more important relative to the oscillatory interactions 

for smaller particle radius. (C) Layering/solvation interaction between spherical particles (4 nm in 

diameter) compared to DLVO interactions. Note that DLVO forces become significant enough 

compared to the layering forces only at very short sub-nm separations. This is also shown explicitly for 

a 10 nm diameter quasi-sphere from simulations (Fig. 3f in the Main Text). 

Estimate for energy scale The free energy (per unit area) scale, 𝐹0 ∼ 𝑏 𝑙𝑐𝜓0
2, is in terms of 

phenomenological parameters that need to be determined from experiment or a more microscopic  
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theory. However, an estimate for the free energy scale can be made by relating the coarse-grained 

parameters to a picture of particles on a lattice: 𝑏 ∼ 𝑘𝐵𝑇/𝑎3, where a is the lattice constant related to

the size of the ions in molten salt (a ~ 5 Å). The ionic density, ns, is related to the lattice constant, 𝑛𝑠 ∼

1/𝑎3. Assuming lc ~ 1 nm and a strong binding to the surface, ψ0 = 1, we get a free energy scale of 10

kBT/nm2
. Using this on a 2×2 nm NC surface, and the expression for interaction energy versus distance 

between parallel plates in Eq. (7), we estimate an interaction energy of the order of 10 kBT at a 

separation of about 1 nm comparable to the energy scale seen in the simulations of flat surfaces (Fig. 

S8A). 

II. Molecular dynamics (MD) simulations of CdSe NCs in molten KCl.

In addition to the analysis with continuum Ginzburg-Landau theory, we ran MD simulations of

CdSe NCs in KCl solvent31. The details for MD simulations are included in the Appendix. Along the 

same lines as the theory discussed above, we start our MD simulations by considering ion layering 

around a single CdSe NC surface. Then we simulate the interactions between two parallel surfaces in 

molten salts, especially along the axis normal to NC surface. We generalize such interactions to two 

tilted surfaces and finally quasi-spherical NCs. For comparison, we also run simulations of 

structureless, or chemically inert, walls in molten KCl. There have been several reports on the influence 

of molecular layering on forces between colloids and nanoparticles using continuum theory and MD 

simulations in room temperature ionic liquids32. However, to the best of our knowledge, there has been 

no quantitative theoretical studies for the forces between colloids induced by an inorganic molten salt.  

In general, solid surfaces are expected to induce liquid density oscillations13,33. In densely charged 

liquids, solid surfaces with surface charge are known to induce even longer range charge density 

oscillations15,27. As expected, we observed robust layering of the K+ and Cl− ions near the surfaces of 

the nanoparticles (normal to the NC surface: Fig. S4). In addition to ion layering in the direction 

normal to the interface, significant in-plane ordering of K+ and Cl− ions was observed near the crystal 

surface (Fig. S5C–F), because of a good match between the in-plane periodicity of the CdSe surface 

and the diameters of ions in the molten salt. The in-plane correlation functions describe the statistically-

averaged, in-plane distances between particles and their neighbors. As in-plane ordering increases, the 

peaks will become sharper and will decay less with distance. For example, a system with no in-plane 

ordering will display a constant value for all separations, while a solid will have sharp peaks that 

extend as far as desired without decay.  
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We quantified the net interaction between two rectangular cuboid zinc-blende CdSe NCs (hereon 

referred to as “nanocubes”) of dimension 2.45×1.85×1.85 nm3 in solution along the axis normal to NC 

surface using standard enhanced sampling techniques (specifically umbrella sampling)34-36. In addition, 

we fit the charge density profile shown in Fig. S4 with the Ginzburg-Landau theory. In detail, we 

extracted the length-scales, the correlation length (lc) and the oscillation frequency (q0) from the density 

profile in Fig. S4 by fitting the expression for the charge density with Eq. (4). Using lc and q0, we were 

able to find correspondence between simulation and theory using a two-parameter fit of Eq. (9) for the 

amplitude, F0, and f(θ). 

We focused on interactions between Cd-terminated CdSe [001] facets, but also collected data for 

the interaction of a [001] Cd-terminated facet interacting with a [111] Cd-terminated facet; the 

nanocube interactions were indistinguishable (Fig. S6). We conclude that the main effect here is 

solvent layering along the surface normal, and that in-plane ordering effects due to surface atom 

arrangement is less important. For simplicity, we fixed the orientation of the nanocubes, and only 

allowed motion along one axis, which is normal to the NC surface. 

Fig. S4. The chemical affinity between Cd-terminated [001] CdSe surface and Cl− induces charge 

density oscillations in molten KCl. (Left) A snapshot of layering of ions around the [001] surface of a 

CdSe nanocube (2.45×1.85×1.85 nm3); (Right) The simulated charge density as a function of the 

distance away from CdSe surface (black dots) and the fit with Ginzburg-Landau theory (solid line); 

note the first Cd-bound Cl− peak has been omitted from the charge density profile. Color code in the 

snapshot: Orange: Cd, yellow: Se, green: K+, and blue: Cl−. 
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Fig. S5. MD simulations of CdSe crystal in molten KCl. Snapshots of MD simulations showing the 

distributions of (A) Cl− and (B) K+ ions near [001] surface of zinc-blende CdSe crystal. (C,D) 

Snapshots of MD simulations and (E,F) in-plane density profiles showing significant in-plane ordering 

in the first layer of Cl− and K+ ions near (C,E) the [001] surface and (D,F) the Cd-terminated [111] 

surface of the zinc-blende CdSe crystal. Color code for the snapshots in (A–D): Blue: Cd; white: Se, 

green: Cl−, red: K+. 
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Fig. S6. Simulated free energies of layering between two surfaces of CdSe nanocubes, [001]-[001] 

(blue) and [001]-[111] (red), in molten KCl. The indistinguishable free energies of interactions 

between different facets indicate the ion layering is the dominant factor.  

Fig. S7. An example of parallel CdSe nanocubes in molten KCl and the corresponding charge 

density profile. (Left) A snapshot of layering of ions between two [001] surfaces of CdSe nanocubes 

(2.45×1.85×1.85 nm3); (Right) Simulated charge density as a function of the distance between two 

surfaces; note the Cd-bound Cl− peaks have been omitted from the charge density profile. Color code in 

the snapshot: Orange: Cd, yellow: Se, green: K+, and blue: Cl−. Here, the density profiles templated by 

the nanocubes constructively interfere, and so this configuration is at a free energy trough. Note that the 

bound layer of Cl− ions are not shown in the charge density profile. 
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Parallel nanocubes induced charge density oscillations in the KCl solvent which interfered at the 

midplane when the nanocubes came close together (Fig. S7). The interference leads to a decaying, 

oscillatory energy of interaction between nanocubes as a function of separation, D (Fig. S8A). If we 

envision two nanocubes coming together along a shared surface normal, there will be certain distances 

where the charge density templated by each cube align and reinforce (Figs. S8C,D). There will also be 

certain distances where the charge densities will be perfectly anti-aligned, leading to destructive 

interference of the charge density wave (Figs.S8E,F). Intuitively, destructive interference is 

energetically costly because planes of like charges interact without screening. As seen in Figs. S8E,F, 

the charge density at the midplane is near zero, indicating an equal mixture of charges, leading to a 

strong, repulsive interaction between the planes of like charge adjacent to the midplane. As will be 

discussed later, the high energy penalty for destructive interference leads to a unique phenomenology. 

A decaying oscillatory interaction energy (Fig. S8A) will preclude nanocube flocculation since 

particles cannot assemble closer than a certain separation where the free energy maximum (peak) 

overpowers the thermal energy. However, such an energy profile also presents the possibility that 

nanocubes might become kinetically trapped (also known as reversible coagulation28) in local minima 

(e.g., point c in Fig. S8A). On the other hand, our simulations show that the colloidal stability can be 

increased by introducing slight tilting. In detail, we introduced frustration into the system by varying 

the nanocube surface normals. A relative tilt between nanocubes washes out the peaks and troughs of 

the interaction energy to some extent. Two nanocubes with a relative tilt can be thought of as a linear 

combination of many parallel plates at slightly different separations, since the effect of tilt is to 

introduce a range of separations between the plates (see Fig. S2A). So the energy of interaction of two 

tilted plates is just the average of the energies of many parallel plates at slightly different separations. A 

larger relative tilt introduces a larger range of separations over which the average must be taken, 

decreasing the oscillatory character of the interaction compared to that of the parallel case. Thus, a 

purely repulsive interaction without much oscillatory character can be observed (Fig. S8B). Note there 

is a significant difference in energy scales shown in Figs. S8A,B due to the diminishing oscillatory 

contribution. Allowing rotations of the nanocubes in simulations would lead to additional repulsive free 

energy beneficial for colloidal stability. This and other possibilities will be explored in future work. 
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Fig. S8. Simulated free energies of layering (blue dots with error range) for two parallel (A) and 

tilted (B) nanocubes (2.45×1.85×1.85 nm3), and fit (solid lines) by the Ginzburg-Landau theory 

with Coulomb interactions (Eq. (13)). (C–F) Simulated charge densities between two parallel 

nanocubes located at troughs (C,D) and peaks (E,F) as marked in (A); the Cd-bound Cl− peaks have 

been omitted from the charge density profiles. Note that constructively interfering charge density 

profiles are low energy configurations and destructively interfering ones are high energy 

configurations. 

Real NCs typically have spheroidal shape truncated with various low-index planes. Thus, we use a 

linear combination of differently tilted nanocubes as a first approximation to these spheroid NC facets 

in the spirit of the Derjaguin approximation. There are a few important points to address with regards to 

the approximation made here. In a real spheroidal NC, different facets have different surface 

compositions. In our simulations, we only consider Cd-terminated facets. As mentioned above,  
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interactions between [001] and [111] facets are equivalent to those between [001] and [001] facets (Fig. 

S6). Thus, we simplified the interactions between various Cd-terminated facets by replacing them with 

[001]-[001] interactions. In addition, we will be combining parallel nanocube and small tilt angle 

nanocube interactions only, which means we can treat these as interactions between flat plates, ignoring 

all nanocube faces except for the closest ones. Informed by the geometry of a faceted spheroidal zinc-

blende CdSe NC, we show quasi-spheres formed from one parallel plate and four, six, or eight tilted 

plates (e.g., there are four [111]-like and four [011]-like facets for each [001]-like facet), as shown in 

Fig. S9. For CdSe NCs with a diameter of 10 nm (close to the upper limit of NC size used in our 

experiments), we find that the troughs are significantly reduced, while the peaks remain high compared 

to thermal energy (10–20 kBT) as the two NCs begin to approach within around 1 nm between the 

closest facets. Such high energy peaks are estimated to be capable to provide long term colloidal 

stability. These simulation results support our experimentally observed colloidal stability of NCs with 

finite curvature in molten inorganic salts.  

Fig. S9. Simulated free energy of layering between two quasi-spherical CdSe NCs (10 nm in 

diameter) in molten KCl. The quasi-spheres are formed by one parallel facet and 4, 6, or 8 tilted 

facets. Inset shows an example of quasi-spherical particle. The highlighted facets have four and six 

adjacent tilted facets contributing to the repulsive force between NCs.  

In all the above simulations, we chose a temperature of 1250 K because it is well above the 

hysteresis loop for our molten salt model and still near the melting point of KCl (~1000 K). Note that   
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our molten salt model does not account for polarization fluctuations. However, we expect the above 

results such as the layering effect and the charge density profile should be general for a wide range of 

temperatures. In Fig. S10, we extract the density profiles near CdSe nanocubes at 1150 and 1200 K and 

measured the correlation lengths and peak heights. Our theory predicts that the amplitude of the energy 

of interaction should go as the square of the density at the NCs. Therefore these density profiles allow 

us to predict how to scale the free energy profiles for systems at these temperatures (Table S1). 

Fig. S10. Temperature dependence of charge ordering induced by CdSe nanocubes 

(2.45×1.85×1.85 nm3) in molten KCl. Note the first Cd-bound Cl− peak has been omitted from each 

charge density profile. 

Table S1. Theory fits for CdSe nanocubes in molten KCl at various temperatures. F scaling indicates 

the appropriate factor to scale the interaction energy at 1250 K in order to find the interaction energy 

for a system at that temperature. The scaling is found simply by dividing the square of the amplitude, A 

at the desired temperature by the square of the amplitude at 1250 K. 

T (K) A (nm−3) lc (nm) q0 (nm−1) φ F scaling 

1150 0.7454 0.496 15.3728 1.6758 1.139 

1200 0.7161 0.4806 15.4125 1.6715 1.051 

1250 0.6986 0.4783 15.3696 1.6673 1 

lc: Ginzburg-Landau correlation length; q0: preferred wavenumber of layering; φ: phase shown in Eq. 

(4); F scaling: free energy per unit area 
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Simulations of ion layering on a structureless (or chemically inert) wall 

For comparison, we also ran MD simulations on a system with structureless surfaces without 

chemical affinity to either ion in the molten KCl. The system has Lennard–Jones (L–J) interactions 

between the solvent and the structureless NC surfaces, and unmodified L–J and Coulomb interactions 

between the ions. We find that the ion density profiles templated by the structureless NC surfaces are 

similar to the density profiles of hard sphere templated by a hard wall. The interaction between the 

structureless NC surfaces is also very similar to the hard sphere-hard wall system. Without surface 

charge and/or different chemical affinity for different solvent, oscillatory ion layering observed earlier 

in the simulation study does not occur. Since much of solvation theory is based on the hard sphere-hard 

wall system and our control system behaves analogously to the hard sphere-hard wall system, we will 

briefly compare the phenomenology of the molten salt-NC system (with chemical affinity) and the hard 

sphere-hard wall system. 

In the absence of surface charge or chemical affinity, ion layers still form, but not the alternating 

oscillations that occur in the presence of surface charge or chemical affinity. Near a hard wall, the 

density profile of a hard sphere fluid oscillates about the bulk density. The correlation length of these 

oscillations is related to the radius of the spheres. The solvent-mediated (hard sphere-mediated) 

interaction between two hard walls is oscillatory, but the source of the oscillations is related to the 

packing of the hard spheres between the walls (Fig. S11). The important factor for the hard sphere-hard 

wall interaction energy is the space available to the hard spheres to move, i.e., the entropy of the hard 

spheres. The peaks and troughs of this energy profile are based on the density of hard spheres at the 

midplane between the two hard walls. When the midplane density is less than the bulk density, the hard 

wall energy is near a trough; when the midplane density is above bulk, the energy is near a peak. 

Beyond this oscillating regime (<0.5 nm), the forces of interaction are usually attractive as 

demonstrated by our simulations and phenomenological theory (Fig. S11). These simulations on a 

structureless wall are in accordance with our experimental observations of destabilization of NCs in 

molten salts when there is no chemical affinity between NCs and the ions. We note that Ginzburg-

Landau theory predicts repulsion between walls which each bind to a different component of the 

solvent, but we expect such interactions to be much weaker than the energy scales associated with 

frustration in inorganic molten salts.37 

Returning to the NC in molten salt system, troughs and peaks correspond to, as discussed above, 

coherence and decoherence of the templated molten salt charge density. NC interaction energy is at a 

minimum when the charge density at the midplane is a peak or a trough. Peak energies occur when 
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there is suboptimal shielding between like-charged solvent layers, i.e., when the charge density at the 

midplane is zero. The dominant energy contribution determines how the energy depends on the density 

profiles, and in molten salts, the Coulomb interaction between templated solvent layers is by far the 

most dominant. 

Fig. S11. Structureless walls are purely attractive. (Left) Density profiles of K+ (green) and Cl− 

(blue) around a hard wall. (Right) Simulated free energy between two structureless walls in molten 

KCl and the fit by Ginzburg-Landau theory. Structureless walls do not induce charge oscillations. As a 

result, the free energy is as predicted by the Ginzburg-Landau theory for solutes which perturb a field 

in a symmetric manner. 

Details of Molecular dynamics (MD) simulation 

We used the LAMMPS MD package31 to simulate a molten salt-nanoparticle model system, 

specifically KCl salt with a CdSe NC. We adapted the models developed by Aguado et al. for molten 

salts38 and by Grunwald et al. for solid CdSe39. These two models have different forms for the steric 

and dispersion interactions, with the molten salt using a Born-Mayer-Huggins form and the CdSe 

crystal using a 6–12 Lennard-Jones form40
. We chose to use the Born-Mayer-Huggins potential, and 

adapted parameter values from Grunwald's force field by finding σ and ε for the Cd and Se ions. The 

parameters used for our model are displayed in Table S2. We simulated an NVT ensemble, with 

temperature at 1250 K (the melting point for our model is around 1000 K) and with KCl density of 

20.681 nm−3. We chose box sizes so that neighboring images of the CdSe nanocubes would have 

negligible interactions: the axis of allowed motion was 21.2 nm in length while the other two axes were 

8.9 nm in length. Since the cubes were of size 2.45×1.85×1.85 nm3 and the largest sampled separation  

WWW.NATURE.COM/ NATURE | 21

SUPPLEMENTARY INFORMATIONRESEARCHdoi:10.1038/nature



was ~3 nm, this box size leaves more than 16 nm between nearest nanocube images along the axis of 

motion. We used the LAMMPS-implemented particle-particle particle-mesh solver to implement the 

long-range Coulomb interactions. We implemented enhanced sampling using the PLUMED code 

plugin34. As a control, we simulated a structureless wall, with no charge and which interacted with 

solvent only through the 6–8 Lennard-Jones potential. The structureless walls displayed a standard 

solvent density profile. But long range charge-density oscillations were not observed as there was no 

surface charge to prefer one ion over the other. Two structureless walls assembled as predicted by the 

Ginzburg-Landau theory for solutes with a symmetric effect on the order parameter.  

Table S2. MD model parameterization 

𝐸𝑑𝑖𝑠𝑝 = 𝐴 exp(−𝑟/ 𝜌) − 𝐶
𝑟6 + 𝐷

𝑟8

Parameterization of CdSe NCs at 1250 K 

A (kBT) ρ (Å) D (kBT Å8) C (kBT Å6) ε (kBT) σ (Å) 

K–K 13763 0.339 −139 141 146 0.994 

Cl–Cl 18019 0.337 −1448 721 89 1.417 

K–Cl 14579 0.342 −423 278 

Cd–K 14087 0.2 66 30 

Se–K 14087 0.5 23284 2391 

Cd–Cl 14087 0.1 152 151 

Se–Cl 14087 0.5 31158 2810 

Parameterization of structureless wall at 1250 K 

A (kBT) ρ (Å) D (kBT Å8) C (kBT Å6) ε (kBT) σ (Å) 

K–K 13763 0.339 −139 141 146 0.994 

Cl–Cl 18019 0.337 −1448 721 89 1.417 

K–Cl 14579 0.342 −423 278 

Wall–K 0 0 14087 1409 

Wall–Cl 0 0 14087 1409 
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III. Derjaguin-Landau-Verwey-Overbeek (DLVO) calculations and screening length

Here we describe how the double layer repulsion, Udl, and the van der Waals attraction, UvdW, as

presented in Fig. S3C and Fig. 3f in the main text were estimated for the CdSe NCs in molten KCl. 

The non-retarded van der Waals interaction between two flat surfaces interacting across the solvent 

medium separated by a distance D is given (per unit area) by 

𝑢𝑣𝑑𝑊
𝑓𝑙 (𝐷) =  − 𝐴

12 𝜋
1

𝐷2  ,       (14a) 

and between two spherical particles of radius R separated by a distance D at the point of closest 

approach: 

𝑈𝑣𝑑𝑊
𝑠𝑝 (𝐷) =  − 𝐴

6
 [ 2𝑅2

(4𝑅+𝐷)𝐷
+ 2𝑅2

(2𝑅+𝐷)2 + ln (4𝑅+𝐷)𝐷
(2𝑅+𝐷)2  ] , (14b) 

where A is the Hamaker constant, a material parameter whose value is specific to the nanocrystal-

solvent system11. Typically, this is estimated from the Lifshitz theory and optical absorption spectra of 

the material.  

A commonly used convenient approximate expression for the Hamaker constant (valid when 

retardation effects are absent, i.e., small D) and the spectrum is characterized by one dominant 

absorption peak11, 

𝐴 ≃ 3
4

𝑘𝐵𝑇 (𝜖𝑝−𝜖𝑠

𝜖𝑝+ 𝜖𝑠
)

2
+ 3 ℎ 𝜈𝑒

16 √2
(𝑛𝑝

2 −𝑛𝑠
2)2

( 𝑛𝑝
2 +𝑛𝑠

2)
3
2

, (15) 

where 𝜀P and 𝜀S are the relative dielectric constants of particles and solvent media, 𝑛P and 𝑛S are the 

refractive indices of particles and solvent media, h is the Planck constant (6.63×10−34 J s), and ve is the 

frequency of the main electronic absorption of the dielectric perimittivity, taken as 3×1015 Hz for ILs. 

The static contribution to the Hamaker constant, i.e., the first term in Eq.(15), is very small as 

conducting media like molten inorganic salts largely screen out the static dipole contributions. The 

Hamaker constant evaluated with the typical values for electronic absorption frequency and refractive 

indices, is A ~ 5×10−20 J.  

We now show that the Hamaker constant can be obtained for the specific case of CdSe interactions 

KCl from values known in the literature, and show that the above approximation results in a value that 

is reasonably accurate. For this we use a combination formula for the Hamaker constants, 𝐴121 ∼
2

(√𝐴11 − √𝐴22) , where Aii indicates interaction of two particles of type i across vacuum, and Aiji 

indicates interactions of two particles of type i interacting across the medium of material j. Using 

values for Hamaker constant for CdSe interacting in vacuum41,42, A11 = 11×10−20 J, and KCl interacting 

in vacuum42, A22 = 6.2×10−20 J, and using the combination formula, we arrive at the relevant Hamaker  
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constant for CdSe particles interacting in KCl medium, A121 = 7×10−21 J, which is an order of 

magnitude lower than that estimated from Eq. (15) for generic dielectric. However, the value used here 

is for crystalline KCl and we expect 𝐴22 to be somewhat lower in molten KCl. The value of Hamaker 

constant in practice should not be so different from A ~ 5×10−20 J estimated above for generic solutes in 

molten salts. 

The electric double layer forces are estimated within the context of the mean-field Poisson-

Boltzmann theory where the Debye screening length, ls, depends on the number density of the salt ions, 

𝑛𝑠, as 𝑙𝑠
−2 = 𝑛𝑠

𝑒2

𝜖0𝜖𝑘𝐵𝑇
= 𝑛𝑠𝑙𝐵, where 𝑙𝐵 ≡ 𝑒2

(𝜖𝜖0𝑘𝐵𝑇)  is the Bjerrum length. The density of ions for 

molten salt at this temperature (ns, 20.7 nm−3) suggests a very small Debye length (0.06 nm), assuming 

a relative permittivity (ε) of 4. This suggests that double layer forces are effectively screened out and 

insignificant. The free energy of double layer interactions can be expressed in terms of the surface 

potential (measured to be 𝑣𝑠 = 50 𝑚𝑉  for the CdSe NC used in the experiments) as11:

𝑈𝑑𝑙(𝐷) = 2 𝜖 𝜖0𝑣𝑠
2𝑙𝑠

−1𝑒−𝐷
𝑙𝑐 (16) 

As a word of caution, the Debye-Hückel approximation is strictly valid only for dilute electrolytes 

and does not account for finite size and correlation effects of the ions that are more important in 

concentrated electrolytes. These effects may be explained within a more general theoretical 

framework22 that should also predict long-range charge density layering in concentrated electrolytes 

consistent with our phenomenological theory and simulations. To account for the possibility of long-

range double layer repulsion due to interionic correlations, we measured the screening length from the 

atomistic simulations by extracting the bulk charge-charge correlation function43. The effective 

screening length in our simulated molten salt at a temperature of 1250 K and 1 bar pressure was found 

to be 0.63 nm (Fig. S12), which is about an order of magnitude larger than the Debye length estimated 

from the Debye-Hückel approximation. This estimate is in agreement with results from previous 

simulations43 and suggests that our calculations are in a regime where the importance of ionic 

correlations is high. Recent experiments on concentrated aqueous electrolytes21 and room temperature 

organic ionic liquids20 also indicate significantly longer effective screening lengths than those predicted 

within the Debye-Hückel approximation. Large effective screening length is expected to further 

improve the colloidal stability of particulates in molten inorganic salts. We anticipate that it will be 

possible to extend our phenomenological theory to explain such effects by including higher order ionic 

correlations22,44. This work is in progress. 
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Fig. S12. Charge-charge correlations in a simulated molten salt. The screening length is identified 

as the exponential decay length of the oscillating charge-charge correlations43. The screening length is 

0.627 nm at 1250 K temperature and the pressure 1 bar. 

IV. Characterization of nanocrystal dispersions in organic ionic liquids (ILs)

CdSe NCs recovered from P+P− IL show vibration peaks similar to those of NCs with original

ligands (OA/TOP/TOPO) rather than P+P−, indicating the preservation of the NC ligand shell when 

dispersed in P+P− (Fig. S13A and B). On the contrary, the FTIR features of NCs recovered from 

[BMIM]+Cl− resembled those of pure [BMIM]+Cl−, which suggests the replacement/removal of 

original organic ligands by [BMIM]+Cl− solvent molecules. The assignment of resonances to different 

protons in free OA and OA bound on CdSe NCs45 is shown in Fig. S13C and D. The resonances of 

protons in TOP and TOPO ligands are within the range of 1.0 to 1.8 ppm and mostly overlap with those 

of the methylene and methyl (–CH2– and –CH3) groups in OA. The characteristic resonance for alkene 

protons (position 5) in free OA is at 5.45 ppm (C); this broadens and shifts to a lower field (5.57 ppm) 

when bound on CdSe NC surfaces (Fig. S13D)45. This resonance is also observed in CdSe NCs in P+P− 

diluted with d8-toluene (P+P−/d8-toluene = 1:10 v/v) (inset in (Fig. S13F)). The amount of OA ligands 

in CdSe NC colloids (calibrated by the concentration of CdSe NCs) remains almost unchanged when 
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dispersed in toluene or P+P−, as shown in (Fig S13H). To check the existence of OA ligands in CdSe 

NCs in [BMIM]+Cl−, the IL matrix was dissolved with DI water. The insoluble CdSe NCs were 

digested by half-concentrated aqua regia and then the OA ligands, if any, were extracting using diethyl 

ether. This solution was dried under vacuum, and then diluted in d8-toluene for NMR measurements. 

No resonances from OA ligands were observed (Fig.S13G), indicating the complete removal of native 

ligands during the phase transfer of CdSe NCs from octane to [BMIM]+Cl−. 

Fig. S13. Surface chemistry of nanocrystals in ionic liquids. FTIR spectra of CdSe NCs with organic 

ligands (OA/TOP/TOPO) and recovered from their stable colloids in (A) P+P− and (B) [BMIM]+Cl−. In 

both cases, the spectra of pure ILs (red curves) are shown for reference. Intensities of recovered NC 

spectra are magnified 20 times. 1H-NMR of (C) OA in d8-toluene and (D) CdSe NCs with original 

organic ligands (OA/TOP/TOPO) in d8-toluene (25 mg/mL, 1.0 mL). The assignment of resonances to 

different protons in OA and OA on the CdSe NC surface is indicated in the inset in (D). (E) P+P− in d8-

toluene, (F) CdSe NCs in P+P− diluted by d8-toluene (2.5 mg/mL, 1.0 mL, P+P−/d8-toluene = 1:10 v/v). 

Inset in (F) compares the OA alkene protons resonances of CdSe NCs in P+P− (red curve, 

overshadowed by the strong resonances from P+P− solvent in D) versus pure P+P− (blue curve). (G) 

Residue recovered from digested CdSe NCs in [BMIM]+Cl−. No OA resonance is present (inset in (G)). 

(H) Comparison of 1H NMR of CdSe NCs with organic ligands in d8-toluene (black curve) and in

P+P−/d8-toluene (1:10 v/v) (red curve). (*) indicates the residual solvent resonances in (C–H). 
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ICP–OES analysis suggests almost no change in the amount of the P-containing surfactants (TOP 

and TOPO) for CdSe NCs in toluene (Cd:Se = 1.2, P:Se = 0.037 in moles) and recovered from P+P− 

(Cd:Se = 1.1, P:Se = 0.030 in moles). In contrast, TOP and TOPO ligands were replaced/removed 

during the phase transfer of CdSe NCs from octane to the Lewis basic [BMIM]+Cl−
 (no P detected). 

Thus, CdSe NCs are stabilized in [BMIM]+Cl− purely by solvent molecules.  

The above analysis depicts the fate of native organic ligands on CdSe NCs in different types of ILs. 

The organic ligands of CdSe NCs remained in the hydrophobic P+P−, but were completely removed and 

replaced before being transferred in [BMIM]+Cl− or [BMIM]+I−. In another experiment, naked CdSe or 

QDs NCs did not disperse well in P+P−, emphasizing the importance of native organic ligands in the 

stabilization of NCs in P+P−. However, we cannot rule out the possibility that the anionic part of P+P− 

(bis(2,4,4-trimethylpentyl)phosphinate) may also behave like additional NC ligands due to its 

nucleophilicity46. In addition, the equilibrium of free and bound OA ligands on CdSe NCs may change 

in P+P−.  
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